Boiler Manual

- Installation
- Maintenance
- Startup
- Parts

- Now available
- Matching High Performance

Companion Water Heater
(Unit sold separately)

WARNING
This manual must only be used by a qualified heating installer/service technician. Read all instructions, including this manual and all other information shipped with the boiler, before installing. Perform steps in the order given. Failure to comply could result in severe personal injury, death or substantial property damage.

Part number 550-142-120/1113
The WM97+70 & 110 Gas-fired water boilers

1. Stainless steel firetube heat exchanger
2. Heat exchanger access cover/burner mounting plate
3. Blower
 The advanced blower design and air inlet silencer on WM97+ boilers result in very quiet operation. Air enters the boiler enclosure through the air intake adapter (18), flows through the enclosure, enters the air inlet silencer (5), then enters the blower. The blower pulls air through the silencer and pushes it into the venturi (6), where it mixes with gas before entering the burner.
4. Gas valve
 The automatic gas valve (4) senses the vacuum in the venturi caused by flowing air, and allows gas to flow when power is applied. A manual gas valve is shipped loose with the boiler. It allows shutting off the gas supply for servicing or shutdown. See instructions in this manual for manual gas valve installation.
5. Air inlet silencer
 The horn-shaped air inlet silencer significantly reduces fan noise, providing exceptionally quiet operation.
6. Venturi
 When air flows through the venturi, it creates a negative pressure. This vacuum pulls gas from the gas valve. So gas will only flow if air is flowing. The gas mixes with air in the venturi. The gas/air mixture then flows into the burner.
7. Outlet water temperature dual sensor
 This dual sensor monitors boiler outlet water temperature. The WM97+ control adjusts boiler firing rate so the outlet water temperature is correct, based on the calculated (if outdoor reset used — see page 133) or fixed target temperature.
8. Return water temperature sensor
 This sensor monitors return water temperature. The WM97+ control reduces or increases boiler input, depending on how close the return water temperature is to the outlet water temperature.
9. DHW tank or Aqua Logic (CWH) piping connections
 An indirect storage water heater can be piped to these connections for direct connection to the boiler. The installer must supply the circulator for a DHW boiler water loop. Aqua Logic (Companion Water Heater or CWH) units are shipped with a circulator.
10. Electronic display & buttons
 The electronic display is used to configure boiler settings and monitor boiler operation.
 The buttons allow changing display mode, selecting and adjusting control settings, and resetting the control after lockout.
11. Flue adapter (fits 3” PVC)
12. Burner
 Made with high-grade stainless steel construction, the burner uses pre-mixed air and gas. The burner and control provide modulating firing.
13. Water outlet pipe (system supply)
14. Water return pipe (system return)
15. Gas connection pipe
 Manual gas valve is shipped loose. Other ½” NPT gas connection pipe and fittings (including union) shown must be supplied by the installer.
16. WM97+ control
 The WM97+ control responds to signals from the room thermostats, DHW aquastats (if used), boiler sensors (boiler return, boiler supply, flue temperature, and outdoor temperature, if used — see page 133).

The control automatically adjusts blower speed (and gas flow rate) to match boiler output to space heating and/or DHW heating demand. The control provides for three heating zones (DHW plus two space-heating or three space heating). DHW direct-connected to the bottom piping connections can be set for domestic priority.

17. Multi-position WM97+ control housing
 The WM97+ control is mounted in a plastic housing assembly that can rotate forward for rear access to the control boards or for access to boiler components. It can also be removed through slots in the boiler jacket sides.
18. Air intake adapter (fits 3” PVC)
19. Electrical entrances
 The left side electrical enclosure (19a) houses the line voltage terminal block. The right side electrical enclosure (19b) houses low voltage terminals.
20. Boiler drain valve (not shown)
 Shipped loose for field piping to DHW return line at bottom of boiler jacket. See instructions in this manual.
21. Integral expansion tank
 The 3.2-gallon internal expansion tank is factory installed as shown. It is supplied with an isolation valve that allows removal for service or replacement without draining the system or boiler.
22. Flue gas condensate drain
 Flexible plastic hose is provided to adapt to 1” PVC (fits in 1” PVC coupling).
23. Flue gas condensate drain trap assembly
 The condensate trap assembly is field-installed, connected to the condensate trap nozzle as shown in this manual.
24. Front door
 The front door is sealed to the boiler assembly around its entire perimeter.
25. Front door latches
 Two latches secure the door in place.
26. Ignition electrode/flame sensor
 The burner flame is ignited by applying a high voltage to the ignition electrode. This causes a spark (from electrode to ground). After ignition, the electrode measures flame signal.
27. Flame inspection window
 The quartz glass window provides a view of the burner surface, the flame, and the ignition electrode.
28. Flue gas dual sensor
 This dual sensor monitors the flue gas exit temperature. The WM97+ control will shut down the boiler if flue gas temperature gets too hot. This protects the flue pipe and the heat exchanger from overheating.
29. ON/OFF switch
30. Primary/secondary shut-off valve
 Supply and return from the heating system are connected to the pipes out the top of the boiler. When p/s shut-off valve is open, the piping connection is primary/secondary, requiring a separate circulator for the system. When the valve is closed, the boiler circulator is used for boiler and system flow.
31. Low water cut-off
32. Boiler circulator
33. Gas valve reference hose
 This rubber line connects the gas valve diaphragm reference chamber to the venturi intake to insure the valve senses the correct reference pressure.
The WM97+70 & 110 Gas-fired water boiler (cont.)
The WM97+155 Gas-fired water boiler

1. Stainless steel firetube heat exchanger
2. Heat exchanger access cover/burner mounting plate
3. Blower
 The advanced blower design and air inlet silencer on WM97+ boilers result in very quiet operation. Air enters the boiler enclosure through the air intake adapter (18), flows through the enclosure, enters the air inlet silencer (5), then enters the blower. The blower pulls air through the silencer and the venturi (6), where it mixes with gas before entering the blower.
4. Gas valve
 The automatic gas valve (4) senses the vacuum in the venturi caused by flowing air, and allows gas to flow when power is applied. A manual gas valve is shipped loose with the boiler. It allows shutting off the gas supply for servicing or shutdown. See instructions in this manual for manual gas valve installation.
5. Air inlet silencer
 The horn-shaped air inlet silencer significantly reduces fan noise, providing exceptionally quiet operation.
6. Venturi
 When air flows through the venturi, it creates a negative pressure. This vacuum pulls gas from the gas valve. So gas will only flow if air is flowing. The gas mixes with air in the venturi. The gas/air mixture then flows into the burner.
7. Outlet water temperature dual sensor
 This dual sensor monitors boiler outlet water temperature. The WM97+ control adjusts boiler firing rate so the outlet water temperature is correct, based on the calculated (if outdoor reset used—see page 133) or fixed target temperature.
8. Return water temperature sensor
 This sensor monitors return water temperature. The WM97+ control reduces or increases boiler input, depending on how close the return water temperature is to the outlet water temperature.
9. DHW tank or Aqua Logic (CWH) piping connections
 An indirect storage water heater can be piped to these connections for direct connection to the boiler. The installer must supply the circulator for a DHW boiler water loop. Aqua Logic (Companion Water Heater or CWH) units are shipped with a circulator.
10. Electronic display & buttons
 The electronic display is used to configure boiler settings and monitor boiler operation. The buttons allow changing display mode, selecting and adjusting control settings, and resetting the control after lockout.
11. Flue adapter (fits 3" PVC)
12. Burner
 Made with high-grade stainless steel construction, the burner uses pre-mixed air and gas. The burner and control provide modulating firing.
13. Water outlet pipe (system supply)
14. Water return pipe (system return)
15. Gas connection pipe
 Manual gas valve is shipped loose. Other ½" NPT gas connection pipe and fittings (including union) shown must be supplied by the installer.
16. WM97+ control
 The WM97+ control responds to signals from the room thermostats, DHW aquastats (when used), boiler sensors (boiler return, boiler supply, flue temperature, and outdoor temperature, if used—see page 133). The control automatically adjusts blower speed (and gas flow rate) to match boiler output to space heating and/or DHW heating demand. The control provides for three heating zones (DHW plus two space-heating or three space heating). DHW direct-connected to the bottom piping connections can be set for domestic priority.
17. Multi-position WM97+ control housing
 The WM97+ control is mounted in a plastic housing assembly that can rotate forward for rear access to the control boards or for access to boiler components. It can also be removed through slots in the boiler jacket sides.
18. Air intake adapter (fits 3" PVC)
19. Electrical entrances
 The left side electrical enclosure (19a) houses the line voltage terminal block. The right side electrical enclosure (19b) houses low voltage terminals.
20. Boiler drain valve (not shown)
 Shipped loose for field piping to DHW return line at bottom of boiler jacket. See instructions in this manual.
21. Boiler circulator
22. Flue gas condensate drain
 Flexible plastic hose is provided to adapt to 1" PVC (fits in 1" PVC coupling).
23. Flue gas condensate drain trap assembly
 The condensate trap assembly is field-installed, connected to the condensate trap nozzle as shown in this manual.
24. Front door
 The front door is sealed to the boiler assembly around its entire perimeter.
25. Front door latches
 Two latches secure the door in place.
26. Ignition electrode/flame sensor
 The burner flame is ignited by applying a high voltage to the ignition electrode. This causes a spark (from electrode to ground). After ignition, the electrode measures flame signal.
27. Flame inspection window
 The quartz glass window provides a view of the burner surface, the flame, and the ignition electrode.
28. Flue gas dual sensor
 This dual sensor monitors the flue gas exit temperature. The WM97+ control will shut down the boiler if flue gas temperature gets too hot. This protects the flue pipe and the heat exchanger from overheating.
29. ON/OFF switch
30. Primary/secondary shut-off valve
 Supply and return from the heating system are connected to the pipes out the top of the boiler. When p/s shut-off valve is open, the piping connection is primary/secondary; requiring a separate circulator for the system. This valve must only be closed when the boiler is connected to a multi boiler manifold, never for a single boiler application.
31. Low water cut-off
The WM97+155 Gas-fired water boiler (continued)
Please read before proceeding

Hazard definitions

The following defined terms are used throughout this manual to bring attention to the presence of hazards of various risk levels or to important information concerning the life of the product.

- **DANGER** Indicates presence of hazards that will cause severe personal injury, death or substantial property damage.
- **WARNING** Indicates presence of hazards that can cause severe personal injury, death or substantial property damage.
- **CAUTION** Indicates presence of hazards that will or can cause minor personal injury or property damage.
- **NOTICE** Indicates special instructions on installation, operation or maintenance that are important but not related to personal injury or property damage.

WARNING Installer—Read all instructions, including this manual and all other information shipped with the boiler, before installing. Perform steps in the order given.

User—This manual is for use only by a qualified heating installer/service technician. Refer to User’s Information Manual for your reference.

User—Have this boiler serviced/inspected by a qualified service technician, at least annually. Failure to comply with the above could result in severe personal injury, death or substantial property damage.

Write in the CP number in the space provided on the Installation certificate on page 135 if not already shown. The CP number label is located on the jacket inside upper left side, above the heat exchanger.

When calling or writing about the boiler—Please have the boiler model number from the boiler rating label and the CP number from the boiler jacket.

Consider piping and installation when determining boiler location.

Any claims for damage or shortage in shipment must be filed immediately against the transportation company by the consignee.

WARNING Failure to adhere to the guidelines on this page can result in severe personal injury, death or substantial property damage.

EXPANSION TANK
- Relieve pressure from the system before isolating the internal expansion tank on WM97+70 or 110 boilers.

WHEN SERVICING BOILER
- To avoid electric shock, disconnect electrical supply before performing maintenance.
- To avoid severe burns, allow boiler to cool before performing maintenance.
- This boiler contains ceramic fiber and fiberglass materials. Refer to the WARNING and instructions on page 96.

BOILER OPERATION
- Do not block flow of combustion or ventilation air to boiler.

CARBON MONOXIDE DETECTOR
- A carbon monoxide detector that is wired on the same electrical circuit as the boiler is strongly recommended.

SURGE PROTECTOR
- Provide surge protection in the boiler power supply. This will reduce the possibility of damage to the boiler control.

BOILER WATER
- The WM97+ heat exchanger is made of stainless steel, and requires that system water chemistry be within the limits in this manual. Use the inhibitor supplied with the boiler. ADDITIONAL CHEMICAL TREATMENT MAY BE NECESSARY. See page 87 for details.
- Thoroughly flush the system (BEFORE connecting boiler) to remove sediment. The high-efficiency heat exchanger can be damaged by build-up or corrosion due to sediment.

FREEZE PROTECTION FLUIDS
- Thoroughly clean and flush any replacement boiler system that has used glycol before installing the new boiler. Use only the products listed by Weil-McLain for use with this boiler. See page 88 for details.

Commonwealth of Massachusetts

If the boiler is installed within the Commonwealth of Massachusetts:

- This product must be installed by a licensed plumber or gas fitter.
- If antifreeze is used, a reduced pressure back-flow preventer device shall be used.
- Sidewall vent air installations — see instruction on page 22.
Boiler location

Installations must comply with:
- Local, state, provincial, and national codes, laws, regulations and ordinances.
- National Electrical Code.
- For Canada only: CAN/CSA B149.1, Natural Gas and Propane Installation Code, and any local codes.

Before mounting the boiler, check:
1. Wall construction — The boiler must be wall mounted. Make sure the wall construction is suitable to carry the weight of the boiler and components. See page 10 for instructions.
2. The boiler is suitable for INDOOR installation only.
3. Check for nearby connection to:
 - System water piping
 - Venting connections
 - Gas supply piping
 - Electrical power
 - Condensate drain
4. Check area around boiler. Remove any combustible materials, gasoline and other flammable liquids.

WARNING Failure to keep boiler area clear and free of combustible materials, gasoline and other flammable liquids and vapors can result in severe personal injury, death or substantial property damage.

5. The WM97+ boiler must be installed so that gas control system components are protected from dripping or spraying water or rain during operation or service.
6. If new boiler will replace existing boiler, check for and correct system problems, such as:
 - Sediment or corrosion in system piping — clean and flush piping BEFORE connecting the new boiler. See page 87.
 - System leaks causing oxygen corrosion or heat exchanger cracks from hard water deposits.
 - Incorrectly-sized expansion tank.
 - Lack of freeze protection in boiler water causing system and boiler to freeze and leak.

Residential garage installation

Precautions
1. Take the following special precautions when installing the boiler in a residential garage. If the boiler is located in a residential garage:
 - Mount the boiler with its bottom at least 18 inches above the floor. This complies with the National Fuel Gas Code, ANSI Z223.1 for U. S. installations, or CSA B149.1 and B149.2 for Canadian installations.
 - Locate or protect the boiler so it cannot be damaged by a moving vehicle.
 - Ensure that the installation complies with all applicable codes.
 - Prevent boiler water and condensate from freezing.

Provide air openings to room

WM97+ boiler alone in boiler room
1. No air ventilation openings into boiler room are needed if clearances around WM97+ boiler are at least equal to the SERVICE clearances shown in Figure 1, page 9.
2. For spaces that DO NOT supply the minimum service clearances, provide two openings as shown in Figure 1, page 9. Each opening must provide 1 square inch free area per 1,000 Btu/h boiler input.

WM97+ boiler in same space with other gas or oil-fired appliances
1. Follow the sizing requirements shown in Figure 20, page 24.

WARNING The space must be provided with combustion/ventilation air openings correctly sized for all appliances located in the same space as the WM97+ boiler.

Reinstall boiler jacket front door after servicing. The boiler front door must be securely fastened to the boiler to prevent boiler from drawing air from inside the boiler room. This is particularly important if the boiler is located in the same room as other appliances.

Failure to comply with the above warnings could result in severe personal injury, death or substantial property damage.

Vent and air piping
1. The WM97+ boiler requires a special vent system, designed for pressurized venting. WM97+ boilers are rated ANSI Z21.13 Category IV (pressurized vent, likely to condense in the vent). See instructions beginning on page 19.
2. You must also install air piping from outside to the boiler air intake adapter. The resultant installation is categorized as direct vent (sealed combustion). Note prevention of combustion air contamination on page 19 when considering vent/air termination.
3. Vent and air must terminate near one another unless otherwise specified in this manual. Vent and air piping may be routed vertically through the roof or out a side wall, following the options given in this manual. You may use any of the vent/air piping methods covered in this manual. Do not attempt to install the WM97+ boiler using any other means.
4. Be sure to locate the boiler such that the vent and air piping can be routed through the building and properly terminated. The vent/air piping lengths, routing and termination method must all comply with the methods and limits in instructions beginning on page 19.
Boiler location (continued)

Provide clearances for service access — RECOMMENDED
1. See Figure 1 for recommended service clearances.
2. If you do not provide minimum service clearances shown, it might not be possible to service the boiler without removing it from the space.

WARNING Closet or small-enclosure installations which do not provide at least these recommended clearances require the specially-sized and placed air openings shown in Figure 2.

Provide clearances from combustible materials — REQUIRED
1. See Figure 2 for REQUIRED minimum clearances. ALL installation must provide at least these minimums.
2. Hot water pipes — at least ½" from combustible materials.
3. Vent pipe — at least 9½" from combustible materials.
4. See Figure 1 for service clearance minimums.

WARNING Closet or small-enclosure installations which do not provide at least the recommended service clearances shown in Figure 1 require the specially-sized and placed air openings shown in Figure 2.

Figure 1 RECOMMENDED service clearances (all dimensions are in inches)

- A Provide combustion air/ventilation openings per Figure 20, page 24 or as otherwise directed in this manual or by applicable codes. NOTICE: If the installation does not provide the minimum clearances in this illustration, then the enclosure must have air openings located and sized per Figure 2.
- B Left side service clearance = 3 inches minimum
- C Service clearance above top of boiler = 12 inches minimum
- D Right side service clearance = 3 inches minimum
- E Service clearance below the boiler = 12 inches minimum
- F Service clearance in front of the boiler = 24 inches minimum

Figure 2 REQUIRED minimum clearances (all dimensions are in inches)

- A Provide combustion air/ventilation openings per Figure 20, page 24 or as otherwise directed in this manual or by applicable codes. **NOTICE:** If the installation does not provide the minimum clearances in Figure 1, then the enclosure MUST HAVE air openings located per Figure 2, above. Each of these air openings must have free area of at least 1 square inch per 1,000 MBH of boiler input.
- B Left side clearance to combustibles = 0 inches minimum
- C Top of boiler clearance to combustibles = 10.5 inches minimum
- D Right side clearance to combustibles = 0 inches minimum
- E Bottom of boiler clearance to combustibles = 5.75 inches minimum (must be 18 inches above floor for garage installations)
- F Clearance in front of the boiler = 0.5 inches, but 24 inches minimum required for service
- G Air openings must be located in the FRONT of the enclosure, as shown. They must be no more than 12 inches from the floor or ceiling, as shown.
- H Vent pipe must be minimum 3/16 inch from combustibles. Opening in combustible wall, floor, ceiling or roof must be 3/8" larger than flue pipe diameter, fitted with galvanized steel thimble, or larger if required by codes or as specified by vent pipe manufacturer.

Aqua Logic Water Heater (CWH) installations — Aqua Logic (CWH) units require a minimum clearance of 18 inches on one side, right or left, for installation of the mixing valve and for clear view of the associated label. Also provide at least 1½ inches on the opposite side. Additional clearance may be needed, depending on how piping is routed. Provide these clearances to allow for future CHW installations as well as current installations. Mount the boiler at the height specified in Figure 5, page 11.
Wall-mounting the boiler

Remove boiler from crate

WARNING The boiler is heavy. Use caution not to drop the boiler or cause bodily injury while lifting and handling. Verify that the boiler is securely attached to prevent possibility of boiler falling after installation.

WARNING After the boiler is removed from the shipping carton, DO NOT allow the boiler to sit on its bottom. This would cause pressure on protruding pipes, resulting in interior damage. Either lay the boiler on its back or leave on the styrofoam protective shipping base.

CAUTION Do not drop boiler or bump jacket on floor or pallet. Damage to boiler can result.

Cold weather handling — If boiler has been stored in a very cold location (below 0°F) before installation, handle with care until the plastic components come to room temperature.

1. The WM97+ boiler is generally easier to handle and maneuver after removing the shipping container.
2. Remove items 1, 2 and 4 in Figure 3. Remove trim kit and parts from item 2.
3. **Leave the boiler resting on the styrofoam protective base** (item 5) and bottom cardboard cap (item 6), until ready to place on the wall. If removing the boiler from the shipping base, rest the boiler on its back, NOT on its bottom.

Wall-mounting requirements

WARNING DO NOT attempt to attach the wall mount bracket using anchors or any means other than directly securing to the wall studs (or equivalent wood structure if studs are not on 16-inch centers).

The wall must be vertically plumb and capable of carrying the weight of the boiler and any attached piping components.

The operating weights for wall-mountable boilers are:

WM97+70 or WM97+110: **140 pounds**
WM97+155: **150 pounds**

Failure to comply with above and the procedure given below could result in severe personal injury, death or substantial property damage.

1. **Stud spacing:** Bracket holes are spaced for studs on 16-inch centers. For other stud spacing, provide secure, solid mounting surface on which to attach the boiler wall-mounting bracket. The mounting surface must not extend above the top of the boiler jacket.
2. **Wood stud wall:** Install bracket and spacer board with lag screws (3/8” x 3”) included in kit, only into the studs.
3. **Metal stud wall:** Secure bracket and spacer board to studs with 3/16-inch toggle bolts and 3/16-inch flat washers (not included with kit).

WARNING Verify that the studs are suitable for carrying a wall-mounted load. Some metal studs are not designed for this purpose.

4. The boiler bracket must engage with the wall-mount bracket. Make sure the brackets are not just resting edge to edge.
5. Mount the boiler on the wall following these instructions. Perform all procedures given in the Boiler Manual on previous pages before mounting the boiler.
Wall-mounting the boiler (continued)

Install the wall-mount bracket and spacer boards (by installer)

1. See Figure 4, page 10.
2. Locate the studs — must be on 16-inch centers. See previous page instructions if studs are not on 16-inch centers.
3. Provide and prepare a spacer board (item 3, Figure 4, page 10) to be installed as shown in Figure 4, page 10 and Figure 5. The board must be minimum ½ inch thick. The top edge of the spacer board must not extend higher than the top of the boiler jacket when installed.
4. Place the wall-mount bracket (item 2, Figure 4, page 10) on the wall, using a level to align correctly.
5. Place the wall-mount bracket so the mounting slots are centered over the studs.
6. Level the bracket and trace the outline of the screw slots with a pencil.
7. Remove the mounting bracket and drill holes 1/4” diameter by 3 inches deep, centered on the screw slot outlines. (For metal stud walls, using 3/16” toggle bolts, drill required clearance holes.)
8. Position the wall-mount bracket and the upper spacer board on the wall. Insert and loosely tighten the two lag screws (or toggle bolts for metal studs).
9. Level the wall-mounting bracket. Then tighten lag screws securely. For drywall or plaster lathe installations, avoid tightening so much that the space board digs into the wall surface.
10. Provide and install a lower spacer board (minimum ½ inch thick) as shown in Figure 5.

Place boiler on bracket

1. See Figure 5. The wall-mount bracket, upper spacer board and lower spacer board must be installed before mounting the boiler.
2. Measure 21 inches below the bottom edge of the wall-mount bracket (item 2). Strike a line or place a piece of masking tape with its top edge even with the 21-inch mark. (This line, or tape, will indicate whether the boiler has been properly seated onto the wall-mount bracket.)

WARNING The boiler is heavy, and requires two people to lift and place. Wear non-slip leather gloves to prevent possibility of cuts from sheet metal edges.

The jacket door can be left in place when handling the boiler, but the boiler must ONLY be lifted by the bottom and rear of the sheet metal housing — NOT by any pipe or plastic part.

3. Obtain assistance to lift the boiler into position.
4. Lift the boiler high enough that its rear bracket (item 4) will be above the wall-mount bracket (item 2).
5. Let the rear of the boiler slide against the lag screw heads as you lower the boiler into place.
6. When the brackets are engaged correctly, the bottom of the boiler enclosure will be at or near the pencil line, or tape, you applied in step 1.
7. If necessary, move the boiler sideways until the wall bracket tabs slip into the boiler mounting bracket slots. Adjust until the brackets properly engage and the boiler slips into the correct position.

WARNING When mounting the boiler, use the method described in paragraph 2 above to ensure the brackets are properly engaged. If not, the boiler could fall. Failure to comply could result in severe personal injury, death or substantial property damage.

NOTICE Mounting height MUST be as shown in Figure 5 if the boiler is to be used with a Aqua Logic Water Heater (CWH) at time of installation or in the future.

1. Studs — Pre-drill through the wall into the studs ¼ inch diameter x 3 inches deep — Studs must be on 16-inch centers. If studs are any other spacing, provide a secure, solid mounting surface on which to attach the boiler wall-mounting bracket.
2. Wall-mount bracket — secure wall mount bracket and space bar to wall as instructed on previous page.
3. Upper spacer board — must be installed as shown, per previous instructions.
4. Boiler mounting bracket — The two slots in the bracket on back of boiler must engage with the two tabs on the wall bracket. This piece is attached to the boiler. (The boiler is not shown to improve clarity.)
5. Lower space board — Provide lower spacer board pre-drilled with two clearance holes, spaced on 16 inch centers. Board must be minimum ½ inch thick by 3/5” high by 18 inches long. Use minimum two flat-head wood screws by 2 inches long to secure the space board securely to the studs. Clearance holes should large enough to clear the shaft of the flat-head wood screws used to secure the board to the studs.
6. Flat-head wood screws by 2” long.
7. Floor surface
8. RECOMMENDED mounting height — this distance ensures room for mounting a Aqua Logic (CWH) unit below the WM97+ should it ever be required.
Boiler hydrostatic test

WARNING DO NOT install a relief valve with a pressure higher than 30 PSIG. This is the maximum allowable relief valve setting for the WM97+ boiler. Failure to comply could prevent the relief valve from operating as needed, resulting in possibility of severe personal injury, death or substantial property damage.

WARNING Use two wrenches when tightening any pipe connection to the boiler. Failure to prevent the boiler pipes from turning could damage pipes, resulting in possible severe personal injury, death or substantial property damage.

Hydrostatic pressure test
Pressure test the boiler before permanently attaching water or gas piping or electrical supply.

Install pipe fittings for relief valve and P/T gauge
1. Install the two 1” or 1½” reducing tees, street ell and close nipple shipped loose with the boiler, located and oriented as shown in Figure 6, page 13.
2. Apply pipe dope to all fittings sparingly.

WARNING DO NOT install the relief valve until after the hydrostatic test. Temporarily install a ¾” pipe plug in the relief valve location as directed in these instructions. The plug must be removed after the test.

WARNING Because the boiler contains an internal check valve, the relief valve must be connected ONLY on the BOILER SUPPLY OUTLET, NOT the boiler return. Connect the relief valve only as shown in this manual.

Failure to comply with the above could prevent the relief valve from operating as needed, resulting in possibility of severe personal injury, death or substantial property damage.

3. Install the pressure/temperature gauge to the upper reducing tee as shown in Figure 6, page 13.

Install fittings and valves required for hydrostatic testing
1. The following piping components (supplied by installer) are required for the test configuration:
 a. Two shut-off valves (1”NPT on 70/110; 1½” NPT on 155).
 b. Two street ells (1”NPT on 70/110; 1½” NPT on 155).
 c. 1” NPT or 1½” NPT pipe nipples as shown in Figure 7, page 13.
 d. ¾” NPT pipe plug.
2. **TEMPORARILY** insert a ¾” NPT pipe plug in the relief valve tapping. After the hydrostatic test, this plug must be removed and the relief valve must be installed.

Fill and pressure test

DANGER 70/110 models only: CLOSE the internal expansion tank isolation valve before hydrostatic testing. The tank will be damaged if exposed to pressure above 42.5 PSIG.

1. CLOSE the boiler’s primary/secondary by-pass valve (item 30, page 3 and page 5).
2. See Figure 7, page 13 for use with the following instructions.
3. CLOSE boiler drain valve (item 16). Connect a hose to fresh water supply and to the drain valve.
4. Place a bucket under the ends of pipe nipples (item 15 and item 17) to catch water dripage.
5. CLOSE isolation valve 12.
7. Slowly open boiler drain valve (item 16) and fresh water supply to fill boiler with water. The boiler and internal piping will fill quickly because of the low water content.
8. When water begins to exit from the supply outlet nipple (item 15), close the boiler drain valve (item 16).
9. OPEN the internal primary/secondary by-pass valve (item 30, page 3 and page 5).
10. OPEN isolation valve 12. Close this valve if water begins to run from the return line nipple (item 17). Skip the next step.
11. Slowly reopen boiler drain valve until water begins to run from the return nipple (item 17). Then CLOSE isolation valve 12.
12. Continue filling until water flows from supply outlet nipple (item 15). Then CLOSE isolation valve 13.
13. When pressure on the pressure/temperature gauge reaches at least 45 PSIG, but no higher than 55 PSIG, CLOSE the boiler drain valve.
14. Hold at test pressure for 10 minutes.

WARNING Do not leave boiler unattended. A cold water fill could expand and cause excessive pressure, resulting in severe personal injury, death or substantial property damage.

15. Make sure constant gauge pressure has been maintained throughout test. Check for leaks. Repair if found.

Drain and remove fittings
1. Disconnect fill water hose from water source.
2. Drain boiler through drain valve.

WARNING Use caution when releasing pressure from the boiler. Rapid water flow could cause injury.

3. Remove hose after draining.
4. Remove nipples and valves unless they will remain for use in the system piping.
5. Remove plug and install relief valve as specified in the following WARNING.

WARNING Remove plug from relief valve street elbow. Install the relief valve in the ¾” street. See page 37 to install relief valve discharge piping. Failure to install the boiler relief valve could result in severe personal injury, death or substantial property damage.
Figure 6 Install pipe fittings for relief valve and pressure/temperature gauge — **DO NOT mount relief valve until AFTER hydrostatic testing** *(see legend at right)*

Figure 7 Install piping components required for hydrostatic test *(WM97+70/110 shown) (see legend below)*

1. Boiler supply (outlet) connection, (male, 1” NPT on 70/110, 1/4” NPT on 155)
2. Boiler return connection, (male, 1” NPT on 70/110, 1/4” NPT on 155)
3. Boiler relief valve, shipped loose with boiler — **DO NOT mount relief valve until AFTER hydrostatic testing**

3a. **TEMPORARILY ONLY** — Insert a ¼” NPT plug in the relief valve tapping of the street ell. This MUST BE REMOVED after the test and the relief valve mounted here.

4. Pressure/temperature gauge, shipped loose with boiler
5. Street ell, ¾” NPT, shipped loose with boiler, for mounting boiler relief valve

For WM97+70 or 110, rotate the street ell to about 30° off center, as shown, to allow room for the relief valve discharge piping.

6a. Reducing tee, NPT, 1” x 1” x ¾” or 1/4” x 1/4” x 1/4”, shipped loose with boiler
6b. Reducing tee, 1” x 1” x ¾” NPT or 1/4” x 1/4” x ¾”, shipped loose with boiler
7. Nipple, 1” close or 1/4” x 1/4”, shipped loose with boiler
8. 1” NPT boiler water SUPPLY connection for DHW tank or Aqua Logic (CWH), if used. DO NOT use this connection for any application except DHW or Aqua Logic (CWH).
9. 1” NPT boiler water RETURN connection for DHW tank or Aqua Logic (CWH), if used. DO NOT use this connection for any application except DHW or Aqua Logic (CWH).
10. 1” NPT pipe cap, shipped loose with boiler — leave this in place if NOT connecting to DHW or CWH here; remove after hydrostatic testing to connect boiler water supply if connecting DHW tank or CWH.
11. 1” x ¾” NPT reducing coupling, shipped loose with boiler — remove after testing if DHW tank or CWH is to be connected; leave in place if not connecting DHW tank or CWH.
12. isolation valve on return connection, by installer (1” NPT on 70/110, 1/4” NPT on 155)
13. isolation valve on supply connection, by installer (1” NPT on 70/110, 1/4” NPT on 155)
14. Street ell(s), by installer (1” NPT on 70/110, 1/4” NPT on 155)
15. Pipe nipple on supply outlet line, by installer — long enough to prevent dripping water on the boiler (1” NPT on 70/110, 1/4” NPT on 155)
16. ¾” NPT boiler drain valve, shipped loose with boiler — after hydrostatic testing, move drain valve to lowest point on the return piping if connecting to DHW tank or CWH; leave as shown if NOT using connection.
17. Pipe nipple on boiler return line, by installer — long enough to prevent dripping water on the boiler (1” NPT on 70/110, 1/4” NPT on 155)
Converting boiler to propane — WM97+70/110

Prepare boiler for propane —
WM97+70/110 only
(if required)

Propane operation

WARNING ALL WM97+ boilers must be converted for propane operation.

Converting an existing natural gas-fired boiler for propane — For a boiler already installed, you must turn off gas supply, turn off power and allow boiler to cool before proceeding. You must also completely test the boiler after conversion to verify performance and start up the boiler following instructions beginning on page 87 of this manual.

Verify 70/110 propane gas orifice bushing — See Figure 8. Verify when installing that the orifice size marking is correct. Bushings will be stamped as in illustration or with “3.85” for model 70 and “4.45” for model 110.

Failure to comply could result in severe personal injury, death or substantial property damage.

Installing propane orifice bushing —
WM97+70/110 only

WARNING If boiler is already installed — You must turn off electrical supply to the boiler and close the external manual gas shut-off valve to isolate the boiler during conversion. Allow the boiler to cool if it has been operating.

Following conversion of an installed boiler, follow all instructions in this manual to start up the boiler and verify operation of the boiler and all system components.

1. Locate the propane orifice bushing from the propane conversion kit bag.
2. Verify that the stamping on the orifice bushing is correct for the model size (see Figure 8).
3. If the jacket front door is not already removed, remove it.
4. Locate the gas valve and venturi (see Figure 9).
5. Pull the gas valve retention ring (item 3, Figure 9) off of the gas valve/venturi joint.
6. Carefully pull the gas valve to the right until it is free of the venturi. Leave the pressure reference hose (item 4, Figure 9) connected at both ends.

WARNING Support the gas valve after disconnecting it. DO NOT allow it to hang from the gas valve flex line. When re-attaching the gas valve, ensure the gas valve-to-venturi O-ring (item 5, Figure 10, page 15) is in place and in good condition. Inspect the gas valve flex line to ensure it is undamaged and in good condition.

Figure 8 Propane gas orifice bushing identification
WM97+70 on left (may be stamped 3.85)
WM97+110 on right (may be stamped 4.45)

Figure 9 Gas valve and venturi

1 Gas valve
2 Venturi
3 Gas valve retention ring
4 Pressure reference hose — LEAVE CONNECTED AT BOTH ENDS
7. See Figure 10. Insert the propane gas orifice bushing (item 4) into the gas valve outlet as shown.

8. Press the bushing into the gas valve outlet until the bushing flange butts against the gas valve outlet.

⚠️ DANGER ⚠️ Inspect the O-rings on the propane gas orifice bushing on the gas valve outlet (item 5, Figure 10). The O-rings must be in good condition and must be installed. Failure to comply will cause a gas leak, resulting in severe personal injury or death.

9. Reposition gas valve into the venturi and reinstall the gas valve retention ring (item 3, Figure 10).

⚠️ WARNING ⚠️ DO NOT ATTEMPT TO MEASURE VALVE OUTLET PRESSURE. The valve could be damaged by manometer fluid contamination. Failure to comply could result in severe personal injury, death or substantial property damage.

10. After installation is complete, attach the propane conversion label (in conversion kit bag) next to the boiler rating plate.

11. Perform complete start-up sequence (beginning on page 87), including check for gas leaks and checking for proper operation.

12. Reinstall jacket front panel.
Converting boiler to propane — WM97+155

Prepare boiler for propane — WM97+155 only (when required)

Propane operation

WARNING ALL WM97+ boilers must be converted for propane operation.

Converting an existing natural gas-fired boiler for propane — For a boiler already installed, you must turn off gas supply, turn off power and allow boiler to cool before proceeding. You must also completely test the boiler after conversion to verify performance and start up the boiler following instructions beginning on page 87 of this manual.

Verify propane gas orifice size — See Figure 11.

Verify when installing that the orifice size marking is correct. Orifice will be stamped as in illustration.

Failure to comply could result in severe personal injury, death or substantial property damage.

WARNING The jacket door must be in place during operation. DO NOT operate the boiler with the jacket door removed except for inspection and testing as directed in this manual.

Installing propane orifice — WM97+155 only

WARNING If boiler is already installed — You must turn off electrical supply to the boiler and close the external manual gas shut-off valve to isolate the boiler during conversion. Allow the boiler to cool if it has been operating.

Following conversion of an installed boiler, follow all instructions in this manual to start up the boiler and verify operation of the boiler and all system components.

1. Locate the propane orifice from the propane conversion kit bag.
2. Verify that the stamping on the orifice is correct for the model size (see Figure 11).
3. If the jacket front door is not already removed, remove it.
4. See Figure 12, page 17 and Figure 13, page 17 for the following.
5. Locate the gas valve and venturi (items 1 and 3).
6. Release the gas line to silencer bracket (item 6) from the gas line and rotate it forward out of the way.
7. Use a 5-mm hex wrench to remove the three Allen screws (item 2) that secure the gas valve to the venturi.
8. See Figure 13, page 17. Carefully pull the gas valve to the right until it is free of the venturi. Securely support the gas valve — DO NOT leave it dangling.
9. Insert the propane gas orifice (item 7) into the gas valve opening as shown in Figure 13, page 17.
10. Make sure that the rubber grommet (item 8) is firmly seated in the gas valve opening.

DANGER When re-attaching the gas valve, ensure the gas valve grommet (item 8, Figure 13) is in place and in good condition. Failure to comply will cause a gas leak, resulting in severe personal injury or death.

11. Reposition gas valve onto the venturi and reinstall the gas valve retention screws (item 2).
Figure 12 Installing the propane gas orifice bushing (some details omitted for clarity)

LEGEND for Figure 12 and Figure 13
1 Venturi (leave venturi attached to blower)
2 (3) hex-head screws, 5 mm hex (remove and retain)
3 Honeywell gas valve
4 Air silencer (leave connected to venturi)
5 Flexible gas line
6 Gas line to silencer bracket (rotate forward before disconnecting gas valve from venturi)
7 Propane orifice (in propane conversion kit envelope)
8 Rubber grommet (must be installed in valve for all applications) — make sure grommet is properly seated in valve before inserting the propane orifice

12. Swing the gas line to silencer bracket (item 6) back into position and snap onto the gas line.

⚠️ WARNING DO NOT ATTEMPT TO MEASURE VALVE OUTLET PRESSURE. The valve could be damaged by manometer fluid contamination. Failure to comply could result in severe personal injury, death or substantial property damage.

13. After installation is complete, attach the propane conversion label (in conversion kit bag) next to the boiler rating plate.

14. Perform complete start-up sequence (beginning on page 87), including check for gas leaks and checking for proper operation.

15. Reinstall jacket front panel.
Gas piping — sizing gas lines

NOTICE
Boiler gas connection is ½” NPT. Size gas lines large enough to provide gas to all connected appliances.

Natural Gas:

Pipe sizing for natural gas
1. Size gas piping from meter outlet to entrance of boiler in accordance with Figure 14 and Figure 15.
2. Use total input of all connected appliances. Divide total input in Btu/h by 1,000 to obtain cubic feet per hour of natural gas.
 a. Pipe lengths in Figure 14 are equivalent length of straight pipe. Convert pipe fittings to equivalent lengths using data from Figure 15.
 b. Figure 14 is only for natural gas with specific gravity 0.60, with a pressure drop through the gas piping as listed in the table.
 c. For additional gas pipe sizing information, refer to ANSI Z223.1 (or B149.1 or B149.2 for Canadian installations).

Natural gas supply pressure
1. Pressure required at gas valve inlet pressure port:
 a. Maximum: 13” (330 mm) w.c. with no flow (lockup).
 b. Minimum gas pressure, with gas flowing (verify during boiler startup, while boiler is at high fire):
 WM97+70: 3½” (89 mm) w.c.
 WM97+110: 4½” (114 mm) w.c.
 WM97+155: 3½” (89 mm) w.c.
2. Install 100% lockup gas pressure regulator in supply line if inlet pressure can exceed 13” w.c. at any time. Adjust lockup regulator for 13” w.c. maximum.

Propane Gas:

WARNING
You must follow the instructions, beginning on page 14, to operate the boiler on propane. Failure to comply could result in severe personal injury, death or substantial property damage.

Pipe sizing for propane gas
1. Contact gas supplier to size pipes, tanks and 100% lockup gas pressure regulator.

Propane supply pressure
1. Adjust propane supply regulator provided by gas supplier for 13” (330 mm) w.c. maximum pressure.
2. Pressure required at gas valve inlet pressure port:
 a. Maximum: 13” (330 mm) w.c. with no flow (lockup).
 b. Minimum gas pressure, with gas flowing (verify during boiler startup, while boiler is at high fire):
 WM97+70: 3½” (89 mm) w.c.
 WM97+110: 4½” (114 mm) w.c.
 WM97+155: 3½” (89 mm) w.c.

Figure 14
Pipe capacity for 0.60 specific gravity natural gas; pipe length is in equivalent feet

<table>
<thead>
<tr>
<th>Gas pipe total length, feet</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic feet per hour, natural gas, 0.60 specific gravity</td>
<td></td>
</tr>
</tbody>
</table>
| Gas pressure 13” (330 mm) w.c. or less
Pressure drop 0.3 inches (7.6 mm) w.c. |
| ½” | ¾” | 1” | 1¼” | 1½” | 2” | 2½” | |
| 10 | 132 | 278 | 520 | 1050 | 1600 | 3050 | 4800 |
| 20 | 92 | 190 | 350 | 730 | 1100 | 2100 | 3300 |
| 30 | 73 | 152 | 285 | 590 | 890 | 1650 | 2700 |
| 40 | NA | 130 | 245 | 500 | 760 | 1450 | 2300 |
| 50 | NA | 115 | 215 | 440 | 670 | 1270 | 2000 |
| 75 | NA | 105 | 175 | 360 | 545 | 1020 | 1650 |
| 100 | NA | 96 | 150 | 305 | 460 | 870 | 1400 |
| 150 | NA | 90 | 120 | 250 | 380 | 710 | 1130 |

Figure 15
Equivalent lengths of straight pipe for typical gas line fittings

<table>
<thead>
<tr>
<th>Pipe size inches</th>
<th>90° Elbow (short radius)</th>
<th>90° Elbow (long radius)</th>
<th>Tee (line flow)</th>
<th>Tee (branch flow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½”</td>
<td>3.6</td>
<td>2.2</td>
<td>1.7</td>
<td>4.2</td>
</tr>
<tr>
<td>¾”</td>
<td>4.4</td>
<td>2.3</td>
<td>2.4</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>5.2</td>
<td>2.7</td>
<td>3.2</td>
<td>6.6</td>
</tr>
<tr>
<td>1¼”</td>
<td>6.6</td>
<td>3.2</td>
<td>4.6</td>
<td>8.7</td>
</tr>
<tr>
<td>1½”</td>
<td>7.4</td>
<td>3.4</td>
<td>5.6</td>
<td>9.9</td>
</tr>
<tr>
<td>2</td>
<td>8.5</td>
<td>3.6</td>
<td>7.7</td>
<td>12.0</td>
</tr>
<tr>
<td>2½”</td>
<td>9.3</td>
<td>4.0</td>
<td>9.3</td>
<td>13.0</td>
</tr>
</tbody>
</table>
Venting/air piping — general

DANGER Do not install the WM97+ boiler into a common vent with any other appliance. This will cause flue gas spillage or appliance malfunction, resulting in possible severe personal injury, death or substantial property damage.

WARNING Existing common vent systems may be too large for the appliances remaining connected after the existing boiler is removed.

WARNING Failure to follow all instructions can result in flue gas spillage and carbon monoxide emissions, causing severe personal injury or death.

When removing a boiler from an existing common vent system

The WM97+ boiler cannot be common vented with any other appliance. When an existing boiler is replaced with an WM97+ boiler, the WM97+ boiler CANNOT use the existing common vent. The WM97+ boiler requires its own vent and air piping, as specified in this manual. This may cause a problem for the appliances that remain on the old common vent, because the vent may be too large. The following test is intended to check for proper operation of the appliances remaining on the old common vent system.

Vent system verification

Perform the test sequence below for each appliance remaining on the original common vent system. Operate each appliance individually, with other appliances turned off. This procedure will test whether the common vent system can properly vent each appliance.

Existing vent test procedure

(The following is intended to test whether the appliances remaining on an existing vent system will operate satisfactorily.)

1. Seal any unused openings in the common venting system.
2. Visually inspect the venting system for proper size and horizontal pitch and determine there is no blockage or restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.
3. Test vent system — Insofar as is practical, close all building doors and windows and all doors between the space in which the appliances remaining connected to the common venting system are located and other spaces of the building. Turn on clothes dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.
4. Place in operation the appliance being inspected. Follow the lighting instructions. Adjust thermostats so appliance will operate continuously.
5. Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle, or smoke from a cigarette, cigar, or pipe.
6. After it has been determined that each appliance remaining connected to the common venting system properly vents when tested as outlined herein, return doors, windows, exhaust fans, fireplace dampers, and any other gas-burning appliance to their previous conditions of use.

Any improper operation of common venting system should be corrected so the installation conforms with the National Fuel Gas Code, ANSI Z223.1 — latest edition. Correct by re-sizing to approach the minimum size as determined using the appropriate tables in Part 11 of that code. Canadian installations must comply with B149.1 or B149.2 Installation Code.

WARNING You must pipe combustion air to the boiler air intake.

Install air inlet piping for the WM97+ boiler as described in this manual. The air termination fitting must be installed with the clearances and geometry relative to the vent outlet depicted in this manual to ensure that flue products do not enter the air intake.

Ensure that the combustion air will not contain any of the contaminants in Figure 16. Do not pipe combustion air near a swimming pool, for example. Avoid areas subject to exhaust fumes from laundry facilities. These areas will always contain contaminants.

Contaminated combustion air will damage the boiler, resulting in possible severe personal injury, death or substantial property damage.

Figure 16 Corrosive contaminants and sources

<table>
<thead>
<tr>
<th>Products to avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray cans containing chloro/fluorocarbons</td>
</tr>
<tr>
<td>Permanent wave solutions</td>
</tr>
<tr>
<td>Chlorinated waxes/cleaners</td>
</tr>
<tr>
<td>Chlorine-based swimming pool chemicals</td>
</tr>
<tr>
<td>Calcium chloride used for thawing</td>
</tr>
<tr>
<td>Sodium chloride used for water softening</td>
</tr>
<tr>
<td>Refrigerant leaks</td>
</tr>
<tr>
<td>Paint or varnish removers</td>
</tr>
<tr>
<td>Hydrochloric acid/muriatic acid</td>
</tr>
<tr>
<td>Cements and glues</td>
</tr>
<tr>
<td>Antistatic fabric softeners used in clothes dryers</td>
</tr>
<tr>
<td>Chlorine-type bleaches, detergents, and cleaning solvents found in household laundry rooms</td>
</tr>
<tr>
<td>Adhesives used to fasten building products and other similar products</td>
</tr>
<tr>
<td>Excessive dust and dirt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Areas likely to have contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry cleaning/laundry areas and establishments</td>
</tr>
<tr>
<td>Swimming pools</td>
</tr>
<tr>
<td>Metal fabrication plants</td>
</tr>
<tr>
<td>Beauty shops</td>
</tr>
<tr>
<td>Refrigeration repair shops</td>
</tr>
<tr>
<td>Photo processing plants</td>
</tr>
<tr>
<td>Auto body shops</td>
</tr>
<tr>
<td>Plastic manufacturing plants</td>
</tr>
<tr>
<td>Furniture refinishing areas and establishments</td>
</tr>
<tr>
<td>New building construction</td>
</tr>
<tr>
<td>Remodeling areas</td>
</tr>
<tr>
<td>Garages with workshops</td>
</tr>
</tbody>
</table>

Part number 550-142-120/1113
Venting & air — general (cont.)

Figure 17 WM97+ venting and air piping — DIRECT VENT ONLY — OPTIONS and PIPING LIMITS

The table below lists the acceptable vent/air pipe terminations described in this manual. Follow all instructions provided to install the vent/air system. NOT SHOWN below, but also approved, are the polypropylene piping and terminations listed in Figure 18, page 21. For these applications, use ONLY the manufacturers’ parts listed and follow all instructions provided by the pipe manufacturer.

Maximum vent and air pipe length = 100 feet for all applications

(All applications include allowance for the termination fittings plus one elbow in air piping and one elbow in vent piping)

USE SWEEP ELBOWS ONLY

See Figure 18, page 21 for material specifications See Figure 123, page 119 for part-kit numbers

VENT and air pipe sizes:

Minimum vent lengths apply for either 2” or 3” vent and air pipe.

If using 2” pipe, provide 3”x2” reducers at boiler connections and at Well-McLain vent/air cap or at concentric terminations. Boilers will derate as vent/air pipe length increases — see rating data on Figure 137, page 133 for derate amounts.

<table>
<thead>
<tr>
<th>WM97+ Model</th>
<th>SIDEWALL termination</th>
<th>VERTICAL termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3” Well-McLain PVC vent/air cap [Note 1]</td>
<td>Separate pipes [Note 1]</td>
<td>PVC or PP Concentric [Note 1]</td>
</tr>
<tr>
<td>70</td>
<td>PVC/PVC-DWV CPVC, PP, SS</td>
<td>PVC/PVC-DWV CPVC, PP, SS</td>
</tr>
<tr>
<td>110</td>
<td>CPVC, PP or SS ONLY</td>
<td>CPVC, PP or SS ONLY</td>
</tr>
<tr>
<td>155</td>
<td>PVC/PVC-DWV CPVC, PP, SS</td>
<td>PVC/PVC-DWV CPVC, PP, SS</td>
</tr>
</tbody>
</table>

See page 25 See page 27 See page 29 See page 31 See page 33

Size, inches Materials Fig. 18, page 21 Size, inches Materials Fig. 18, page 21

** Model 155 may be concentric sidewall (NOT vertical concentric vented) using Centrotherm polypropylene pipe (Eco Systems InnoFlue® Single-wall) ONLY if using Centrotherm stainless steel concentric termination kit, part number ICWS3513.

WARNING All elbows in vent and air piping must be sweep elbows ONLY. DO NOT use short-radius elbows.

Equivalent feet for elbows (USE SWEEP ELBOWS ONLY) — deduct from max equivalent length of piping (does not apply to termination fittings):
- 7 feet per each additional 90° sweep elbow or 45° elbow — if piping contains more than 1 elbow in air or vent piping, other than termination fittings.

Material abbreviations: PP = polypropylene, SS = AL29-4C stainless steel

If using polypropylene or stainless pipe, provide adapters to for 3” boiler connections and for terminations, if required.

IPEX 3” PVC concentric vent kits can be used with standard PVC pipe, fittings and cement (ANSI/ASTM D1785) except if UL&S636 compliance is required. For UL&S636 compliance, all pipe fittings and cement must be IPEX System 636. If using IPEX kits use only IPEX product code 196006 for 3” venting.

Contact Well-McLain for ordering information and availability of Well-McLain venting kits.
Venting & air — general (cont.)

Figure 18 Vent and air piping materials — Use only the materials listed below, ensuring that all materials meet local codes (see Figure 123, page 119 for part/kit numbers)

<table>
<thead>
<tr>
<th>Item</th>
<th>Material</th>
<th>Standards for installations in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Plastic piping materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent or air piping & fittings</td>
<td>PVC schedule 40</td>
<td>ANSI/ASTM D1785</td>
</tr>
<tr>
<td></td>
<td>PVC-DWV schedule 40 (Note 1)</td>
<td>ANSI/ASTM D2665</td>
</tr>
<tr>
<td></td>
<td>CPVC schedule 40 (Note 1)</td>
<td>ANSI/ASTM F441</td>
</tr>
<tr>
<td>PVC & ABS pipe cement & primer</td>
<td>PVC</td>
<td>ANSI/ASTM D2564/F656</td>
</tr>
<tr>
<td></td>
<td>CPVC (Note 1)</td>
<td>ANSI/ASTM F493</td>
</tr>
<tr>
<td>Polypropylene vent pipe, fittings, terminations and cement</td>
<td>Simpson-Duravent — Obtain all materials from M&G</td>
<td>See manufacturer’s literature for detailed information</td>
</tr>
<tr>
<td></td>
<td>Centromer Eco Systems InnoFlue® Single-wall — Obtain all materials from Centromer</td>
<td>MUST USE LOCKING COLLAR ON EVERY JOINT</td>
</tr>
<tr>
<td>AL29-4C stainless steel piping materials</td>
<td>Heat Fab, Inc. — Saf-T-Vent®</td>
<td>Certified for Category IV and direct vent appliance venting</td>
</tr>
<tr>
<td></td>
<td>Z-Flex, Inc. — Z-Vent II</td>
<td>Certified for Category IV and direct vent appliance venting</td>
</tr>
<tr>
<td></td>
<td>Dura-Vent — FastSeal™</td>
<td>Certified for Category IV and direct vent appliance venting</td>
</tr>
<tr>
<td></td>
<td>Metal-Fab, Inc. — CORR/GUARD</td>
<td>Certified for Category IV and direct vent appliance venting</td>
</tr>
<tr>
<td></td>
<td>Centromer Eco Systems — InnoFlue®</td>
<td>Certified for Category IV and direct vent appliance venting</td>
</tr>
</tbody>
</table>

Weil-McLain stainless steel bird screens, 2” or 3” (purchase separately) — see Figure 123, page 119 for part numbers

Note 1: Weil-McLain concentric vent kits are made from PVC pipe and fittings.

Note 2: System 636 PVC concentric terminations utilize PVC pipe fittings certified to ULC S636. If ULC S636 compliance is required, use only System 636 pipe, fittings and cement.

⚠️ WARNING ⚠️ DO NOT mix piping from different pipe manufacturers unless using adapters specifically designed for the purpose by the manufacturer.

⚠️ WARNING ⚠️ Every joint on polypropylene vent piping must include a locking collar.

⚠️ WARNING ⚠️ DO NOT use cellular core PVC (ASTM F891), cellular core CPVC, or Radel® (polysulfone) in venting systems.

⚠️ WARNING ⚠️ DO NOT cover non-metallic vent pipe and fittings with thermal insulation.

⚠️ WARNING ⚠️ USE SWEEP ELBOWS FOR ALL VENT AND AIR PIPING — DO NOT use short radius elbows for vent or air piping. Boiler performance could be affected.

⚠️ WARNING ⚠️ ALL vent and air pipes require a BIRDS SCREEN at each termination. Most kits do not include the bird screens. Purchase bird screens separately from Weil-McLain or vent kit supplier if not included. [Note — bird screening is integral to the 3” PVC Weil-McLain sidewall vent cap, supplied standard with all WM97+ boilers. No additional screening is required.]
Commonwealth of Massachusetts installations

Commonwealth of Massachusetts — When the boiler is installed within the Commonwealth of Massachusetts, the boiler must be installed by a licensed plumber or gas fitter. Read and comply with the instructions below.

(a) For all sidewall horizontally-vent ed gas-fueled equipment installed in every dwelling, building or structure used in whole or in part for residential purposes, including those owned or operated by the Commonwealth and where the sidewall exhaust vent termination is less than seven (7) feet above finished grade in the area of the venting, including but not limited to decks and porches, the following requirements shall be satisfied:

1. **INSTALLATION OF CARBON MONOXIDE DETECTORS.** At the time of installation of the side wall horizontal vented gas fueled equipment, the installing plumber or gas fitter shall observe that a hard wired carbon monoxide detector with an alarm and battery back-up is installed on the floor level where the gas equipment is to be installed. In addition, the installing plumber or gas fitter shall observe that a battery operated or hard wired carbon monoxide detector with an alarm is installed on each additional level of the dwelling, building or structure served by the side wall horizontal vented gas fueled equipment. It shall be the responsibility of the property owner to secure the services of qualified licensed professionals for the installation of hard wired carbon monoxide detectors
 a. In the event that the side wall horizontally vented gas fueled equipment is installed in a crawl space or an attic, the hard wired carbon monoxide detector with alarm and battery back-up may be installed on the next adjacent floor level.
 b. In the event that the requirements of this subdivision can not be met at the time of completion of installation, the owner shall have a period of thirty (30) days to comply with the above requirements; provided, however, that during said thirty (30) day period, a battery operated carbon monoxide detector with an alarm shall be installed.

2. **APPROVED CARBON MONOXIDE DETECTORS.** Each carbon monoxide detector as required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL 2034 listed and IAS certified.

3. **SIGNAGE.** A metal or plastic identification plate shall be permanently mounted to the exterior of the building at a minimum height of eight (8) feet above grade directly in line with the exhaust vent terminal for the horizontally vented gas fueled heating appliance or equipment. The sign shall read, in print size no less than one-half (1/2) inch in size, “GAS VENT DIRECTLY BELOW. KEEP CLEAR OF ALL OBSTRUCTIONS.”

4. **INSPECTION.** The state or local gas inspector of the side wall horizontally vented gas fueled equipment shall not approve the installation unless, upon inspection, the inspector observes carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR 5.08(2)(a) 1 through 4.

(b) **EXEMPTIONS:** The following equipment is exempt from 248 CMR 5.08(2)(a) 1 through 4:
 1. The equipment listed in Chapter 10 entitled “Equipment Not Required To Be Vented” in the most current edition of NFPA 54 as adopted by the Board; and
 2. Product Approved side wall horizontally vented gas fueled equipment installed in a room or structure separate from the dwelling, building or structure used in whole or in part for residential purposes.

(c) **MANUFACTURER REQUIREMENTS — GAS EQUIPMENT VENTING SYSTEM PROVIDED.** When the manufacturer of Product Approved side wall horizontally vented gas equipment provides a venting system design or venting system components with the equipment, the instructions provided by the manufacturer for installation of the equipment and the venting system shall include:
 1. Detailed instructions for the installation of the venting system design or the venting system components; and
 2. A complete parts list for the venting system design or venting system.

(d) **MANUFACTURER REQUIREMENTS — GAS EQUIPMENT VENTING SYSTEM NOT PROVIDED.** When the manufacturer of a Product Approved side wall horizontally vented gas fueled equipment does not provide the parts for venting the flue gases, but identifies “special venting systems”, the following requirements shall be satisfied by the manufacturer:
 1. The referenced “special venting system” instructions shall be included with the appliance or equipment installation instructions; and
 2. The “special venting systems” shall be Product Approved by the Board, and the instructions for that system shall include a parts list and detailed installation instructions.

(e) A copy of all installation instructions for all Product Approved side wall horizontally vented gas fueled equipment, all venting instructions, all parts lists for venting instructions, and/or all venting design instructions shall remain with the appliance or equipment at the completion of the installation.
Vent termination requirements

Figure 19 The vent termination must be located to meet all requirements below (also applies to vertical vent terminations). For Canadian installations, defer to the requirements of CSA B149.1 or B149.2 Installation Code.

MINIMUM CLEARANCES

- **DOOR**
 - 12 inches min.
- **OPENABLE WINDOW**
 - 12 inches min.
 - 12 inches min.

DO NOT TERMINATE:

- **MECHANICAL EQUIPMENT**
- **PLANTS**
- **AVOID possible contact with people or pets**
- **AVOID possible damage to surfaces due to condensate freezing**

VENT

- 3 feet above (not below) if within 10 feet horizontally.
- 1 foot above or 4 feet below if within 4 feet horizontally.

FORCED AIR INTAKE

NON-MECHANICAL AIR INTAKE

METER, REGULATOR, RELIEF VALVE, etc.

DO NOT TERMINATE:

- **ROOF OVERHANG**
 - 5 feet min.
 - 6 feet min. to a wall or 10 feet min. if opposite an operable opening in another building.
 - 12 inches min.

- **WALL**
 - 12 inches min.

- **GRADE or SNOW LINE**

- **PUBLIC WALKWAY**

CONSIDER

- **WINDOW**
 - The vent plume can block the view when the vent is located below a window.
 - **DO NOT** terminate above a door or window — condensate can freeze and cause ice formations.
Boiler room air openings

Figure 20 Combustion and ventilation air openings for WM97+ Direct Vent installations

<table>
<thead>
<tr>
<th>WARNING</th>
<th>The WM97+ boiler CANNOT be in the same space with other appliances if clearances around the WM97+ are less than the recommended service clearances shown in Figure 1, page 9.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air openings</td>
<td>WM97+ boiler WITH other appliances in room</td>
</tr>
<tr>
<td>The required air opening sizes below are FREE AREA, after reduction for louver obstruction. Note the exception below for large spaces.</td>
<td>TWO openings, each at least: 1 square inch per 1,000 Btu of all other appliances in the room (Unless specified otherwise by appliance manufacturer)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** NOTICE:**
Requirements for using the SINGLE air opening option.

A single combustion air opening can be used for cases b, c or d above (WM97+ with other appliances in room only), sized as listed, provided that:
- The single opening must communicate directly to the outdoors or to a space that communicates directly with outdoors (NOT to an interior space).
- The top of the opening must be within 12 inches of the ceiling.
- The free area of the opening must be at least equal to the sum of the areas of all equipment vent connectors in the space.

SPECIAL EXCEPTION FOR LARGE SPACES (WM97+ WITH other appliances in room only):

NO combustion air openings are needed if the boiler (and other appliances) are installed in a space with a volume NO LESS than 50 cubic feet per 1,000 Btu of all appliances in the space. That is, total the input of all appliances in MBH (1,000's of Btu), then multiply this total times 50. The building MUST NOT be of tight construction. Example: For a total input of 500 MBH (500,000 Btu), the minimum volume would be 50 x 500 = 25,000 cubic feet.
DIRECT VENT — Sidewall with W-M vent/air plate

Allowable vent/air pipe materials & lengths

WARNING Use only the vent materials and kits listed in Figure 18, page 21. Provide pipe adapters if specified.

1. Locate the termination such that the total air piping and vent piping from the boiler to the termination will not exceed the maximum length given in Figure 17, page 20.

Polypropylene For polypropylene applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transition pieces at the boiler vent and air connections and at the vent termination. Install a locking collar at every joint.

AL29-4C S.S. For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transition pieces at the boiler and at the vent and air terminations. (The air pipe must be PVC or CPVC.)

Determine termination location

1. The vent/air cap must be installed as shown in Figure 24, page 26.
2. The termination must comply with clearances and limitations shown in Figure 19, page 23.
3. Locate the termination so it is not likely to be damaged by foreign objects, such as stones or balls, or subject to buildup of leaves or sediment.

Multiple vent/air terminations or termination adjacent to other appliance terminations

1. When terminating multiple WM97+ boilers, terminate each vent/air connection as described in this manual.

WARNING All vent pipes and air inlets must terminate at the same height to avoid possibility of severe personal injury, death or substantial property damage.

2. Place wall penetrations to obtain minimum clearance as shown in for U.S. installations. For Canadian installations, provide clearances required by CSA B149.1 or B149.2 Installation Code and a ULC S636 compliant vent kit.

3. The air inlet of a WM97+ boiler is part of a direct vent connection. It is not classified as a forced air intake with regard to spacing from adjacent boiler vents.

WARNING For terminations of other appliances, provide at least the clearance shown. The installation must also comply with the manual for the other appliances.

Figure 21 INSTALLATION — W-M sidewall vent/air plate

Figure 21 INSTALLATION — W-M sidewall vent/air plate

Vent/air pipes and vent/air can be oriented as option 1, 2, or 3. DO NOT mount with plate vertical and vent outlet down.

Step 1 Read and follow all instructions in this manual. DO NOT proceed with vent/air installation until you have read page 19 through page 24. See notices at left.

Step 2 Install the boiler in a location that allows proper routing of all vent and air piping to the selected sidewall location.

Step 3 Make sure the selected sidewall termination location complies with Figure 19, page 23. (Multiple boiler sidewall plates must also comply with .)

Step 4 Use only the vent materials listed in Figure 18, page 21. Provide pipe adapters where required.

Step 5 Vent piping and air piping lengths must not exceed the values shown in Figure 17, page 20.

Step 6 Prepare the sidewall penetrations and secure the sidewall plates as instructed in this section. See “Install Weil-McLain vent/air cap” on page 26.

Step 7 The Weil-McLain plate termination must be installed before piping from the boiler to the termination.

Step 8 Install vent and air piping between the boiler and the vent/air termination plate. Slope horizontal piping downward toward the boiler at least 1/4 inch per foot. See page 36 for general guidelines.

Step 9 Install pipe supports every 5 feet on both the horizontal and vertical runs, or per vent pipe manufacturer’s instructions. See notices at left.

Step 10 Install a hanger support within 6 inches of any upturn in the piping, or per vent pipe manufacturer’s instructions. See notices at left.

WARNING USE SWEEP ELBOWS FOR ALL VENT AND AIR PIPING — DO NOT use short radius elbows for vent or air piping. Boiler performance could be affected.
DIRECT VENT — Sidewall with W-M vent/air plate (continued)

Install Well-McLain vent/air cap

WARNING ADAPTORS — Use adapters if using other than 3-inch PVC or CPVC. This is required for different materials (polypropylene or AL29-4C stainless steel) or if using 2-inch pipe.

NOTICE The inside and outside cover plates are stamped to identify the exhaust (vent) and intake (air) openings. Make sure to orient the plates correctly.

1. Locate termination opening and avoid obstructions:
 a. Use the template supplied with the termination kit.
 b. Locate the template on the outside building surface where the penetration is to be made.
 c. Make sure there will be no obstructions that might prevent proper placement of the termination.
 d. Use the template to mark the locations for the four mounting holes, flue pipe and air pipe. Level the template with a level.

WARNING For the Weil-McLain plate, the template must be level to ensure the flue and air pipe will be side-to-side, as shown in Figure 23. Failure to comply could result in severe personal injury, death or substantial property damage.

e. Cut holes in the wall as shown in Figure 23, using the location marks made with the template. For best results, use a small-diameter, long drill bit to drill centering holes for the flue and air pipe openings. Then drill the large openings from both the inside and outside.

f. The flue pipe and air pipe may be run through a rectangular cutout (as marked on the template) in lieu of two separate holes if desired.

2. Drill holes for the screws or plastic anchors to secure the outside plate. Install the outside plate and mount the termination on the plate (temporarily).
 a. Cut the flue pipe so the extension through the wall will cause the vent pipe to fully extend into the termination socket.
 b. Cut the air pipe so the extension through the wall will butt the air pipe against the stops inside the termination.
 c. Temporarily slide the flue and air pipes through the opening(s). Slide the inside wall plate over the two pipes and into position on the inside wall.
 d. Position the inside plate so the flue pipe and air pipe slope downward slightly toward the boiler (1/4” per foot).
 e. Mark the four (4) mounting holes for the plate.
 f. Remove the vent and air pipe, drill the four mounting holes, and mount the inside plate.

3. Test fit the vent/air termination on the vent pipe. Make sure the vent pipe fully penetrates the termination socket and the air pipe butts against the interior stops.

4. Apply silicon RTV sealant to the interior of the vent termination and slide onto vent pipe. Rotate slightly to spread the silicon to ensure a tight seal around the vent pipe.

5. Secure the termination in place using the four #10 x ½” sheet metal screws and lock washers (see Figure 24).
DIRECT VENT — Sidewall with separate pipes

Allowable vent/air pipe materials & lengths

WARNING Use only the vent materials and kits listed in Figure 18, page 21. Provide pipe adapters if specified.

1. Locate the termination such that the total air piping and vent piping from the boiler to the termination will not exceed the maximum length given in Figure 17, page 20.

Polypropylene

For polypropylene applications, comply with any additional requirements in the vent system manufacturer's instructions. Provide a 3" PVC transition piece at the boiler vent and air connections. Install a locking collar at every joint.

AL29-4C S.S.

For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer's instructions. Provide a 3" PVC transition piece at the boiler vent connection. The air piping must be PVC or CPVC. Provide a 3" PVC transition piece at the boiler air connection if using 2" air piping.

Determine termination location

1. The air and vent terminations must be installed as shown in Figure 25, page 27 and Figure 27, page 28.

2. The terminations must comply with clearances and limitations shown in Figure 19, page 23.

3. Locate the terminations so they are not likely to be damaged by foreign objects, such as stones or balls, or subject to buildup of leaves or sediment.

WARNING Do not exceed the maximum lengths of the outside vent piping shown in Figure 25. Excessive length exposed to the outside could cause freezing of condensate in the vent pipe, resulting in potential boiler shutdown. In extremely cold climates, install an insulated chase around the vent piping, particularly if using longer lengths. The chase must allow for inspection of the vent pipe, and insulation must be protected from water.

Multiple vent/air terminations

1. When terminating multiple WM97+ boilers, terminate each vent/air connection as described in this manual.

WARNING USE SWEEP ELBOWS FOR ALL VENT AND AIR PIPING

— DO NOT use short radius elbows for vent or air piping. Boiler performance could be affected.

Figure 25 INSTALLATION SEQUENCE — Separate pipes sidewall

Step 1 Read and follow all instructions in this manual. DO NOT proceed with vent/air installation until you have read page 19 through page 24. See notices at left.

Step 2 Install the boiler in a location that allows proper routing of all vent and air piping to the selected sidewall location.

Step 3 Make sure the selected sidewall termination location complies with Figure 19, page 23. (Multiple boiler sidewall plates must also comply with Figure 26, page 28.)

Step 4 Use only the vent materials listed in Figure 18, page 21. Provide pipe adapters where required. Vent piping and air piping lengths must not exceed the values shown in Figure 17, page 20.

Step 5 Prepare the sidewall penetrations and secure the sidewall plates as instructed in this section. See “Prepare wall penetrations” on page 28. See notices at left.

Step 6 The air piping must terminate in a down-turned elbow as shown above. The vent piping must terminate in an elbow pointed outward or away from the air inlet as shown above. See illustration above.

Step 7 Install vent and air piping between the boiler and the sidewall openings. Slope horizontal piping downward toward the boiler at least 1/4 inch per foot. See page 36 for general guidelines. See notices at left.

Step 8 Install pipe supports every 5 feet on both the horizontal and vertical runs. Install a hanger support within 6 inches of any turn in the piping, or per vent pipe manufacturer's instructions. See notices at left.

Step 9 Attach the vent termination exterior piping: Use either of the configurations shown above, as needed to ensure clearance above grade or snow line.

Step 10 The vent and air pipes may run up as high as 4 feet with no enclosure. The vent and air pipes must be secured with braces, and all clearances and lengths must be maintained. Space braces no further than 24 inches apart.

Step 11 External venting greater than 4 feet requires an insulated enclosure around the vent and air pipes. The vent and air terminations must exit through the enclosure as shown in the illustration above, maintaining all required clearances.
DIRECT VENT — Sidewall with separate pipes (continued)

WARNING
All vent pipes and air inlets must terminate at the same height to avoid possibility of severe personal injury, death or substantial property damage.

2. Place wall penetrations to obtain minimum clearances shown in Figure 26, page 28 for U.S. installations. For Canadian installations, provide clearances required by CSA B149.1 or B149.2 Installation Code and a ULC S636 compliant vent kit.

3. The air inlet of a WM97+ boiler is part of a direct vent connection. It is not classified as a forced air intake with regard to spacing from adjacent boiler vents.

Prepare wall penetrations
1. Air pipe penetration:
 a. Cut a hole for the air pipe. Size the air pipe hole as close as desired to the air pipe outside diameter.

2. Vent pipe penetration:
 a. Cut a hole for the vent pipe. For either combustible or non-combustible construction, size the vent pipe hole at least 0.4” larger than the vent pipe diameter.
 b. Insert a galvanized metal thimble in the vent pipe hole as shown in Figure 27.

3. Use a sidewall termination plate as a template for correct location of hole centers.
 a. Sidewall termination plates for 3” PVC piping are included with the Weil-McLain sidewall vent/air plate kit, shipped with each boiler.
 b. For 3” AL29-4C vent pipe (with 3” PVC air pipe) or for 2” PVC vent/air piping, purchase optional sidewall separate pipes plate kit.

4. Follow all local codes for isolation of vent pipe when passing through floors or walls.

5. Seal exterior openings thoroughly with exterior caulk.

Termination and fittings
1. Prepare the vent termination elbow and the air termination elbow by inserting bird screens. (See Figure 25, page 27.) Bird screens must be purchased separately. See the parts list at the end of this manual for part numbers.

2. When completed, the air termination coupling must be oriented at least 12 inches below the vent termination and at least 12 inches above grade or snow line as shown in Figure 25, page 27.

3. You can orient the vent termination elbow either directly outward or 90 degrees away from the air inlet elbow as shown in Figure 25, page 27.

4. Maintain the required dimensions of the finished termination piping as shown in Figure 25, page 27.

5. For multiple boiler terminations, see Figure 26, page 28.

6. Do not extend exposed vent pipe outside of building more than shown in this document. Condensate could freeze and block vent pipe.

NOTICE
If extending the vent and air pipes out from the wall, install a coupling on each pipe. Mount the piping with the coupling flush with the outer plate.
DIRECT VENT — Sidewall concentric

Allowable vent/air pipe materials & lengths
1. The concentric termination kit must be purchased separately.

- **WARNING** Use only the vent materials and kits listed in Figure 18, page 21. Provide pipe adapters if specified.

2. Locate the termination such that the total air piping and vent piping from the boiler to the termination will not exceed the maximum length given in Figure 17, page 20.

3. This termination requires a 45-degree elbow that is not supplied with the termination kit. The maximum vent/air pipe lengths include allowance for this elbow.

- **Polypropylene**
 For polypropylene applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transition pieces at the boiler vent and air connections and at the termination if using a 3” PVC concentric vent kit. Install a locking collar at every joint.

- **AL29-4C S.S.**
 For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide a 3” PVC transition at the boiler vent connection. Air pipe must be PVC or CPVC. Provide a 3” PVC transition at the boiler air connection if using 2” air pipe. Provide transition pieces to PVC at the vent and air pipe termination connections.

Determine termination location
1. The concentric termination kit must be installed as shown in Figure 30, page 30.

2. The termination must comply with clearances and limitations shown in Figure 19, page 23.

3. Locate the termination so it is not likely to be damaged by foreign objects, such as stones or balls, or subject to buildup of leaves or sediment.

Multiple vent/air terminations
1. When terminating multiple WM97+ boilers, install each concentric termination as described in this manual.

- **WARNING** All vent pipes and air inlets must terminate at the same height to avoid possibility of severe personal injury, death or substantial property damage.

2. Place wall penetrations to obtain minimum clearance as shown in Figure 29, page 30 for U.S. installations. For Canadian installations, provide clearances required by CSA B149.1 or B149.2 Installation Code and a ULC S636 compliant vent kit.

3. The air inlet of a WM97+ boiler is part of a direct vent connection. It is not classified as a forced air intake with regard to spacing from adjacent boiler vents.

Figure 28 INSTALLATION SEQUENCE — Concentric horizontal

- **Step 1** Read and follow all instructions in this manual. **DO NOT** proceed with vent/air installation until you have read page 19 through page 24. See notices at left.

- **Step 2** Install the boiler in a location that allows proper routing of all vent and air piping to the selected sidewall location.

- **Step 3** Make sure the selected sidewall termination location complies with Figure 19, page 23. (Multiple boiler concentric terminations must also comply with Figure 29, page 30.)

- **Step 4** Use only the vent materials listed in Figure 18, page 21. Provide pipe adapters where required.

- **Step 5** Vent piping and air piping lengths must not exceed the values shown in Figure 17, page 20.

- **Step 6** The concentric termination must be assembled and installed before piping from the boiler to the termination.

- **Step 7** Prepare the sidewall penetration — assemble the concentric termination kit and secure the cover plates as instructed in this section. Provide the supports indicated and mount the termination assembly. See “Install termination — concentric pipes” on page 30. See notices at left.

- **Step 8** Install vent and air piping between the boiler and the concentrative vent/air termination. Slope horizontal piping downward toward the boiler at least 1/4 inch per foot. See page 36 for general guidelines.

- **Step 9** Install pipe supports every 5 feet on both the horizontal and vertical runs. See notices at left.

- **Step 10** Install a hanger support within 6 inches of any turn in the piping. See notices at left.

- **WARNING** **USE SWEEP ELBOWS FOR ALL VENT AND AIR PIPING** — **DO NOT** use short radius elbows for vent or air piping. Boiler performance could be affected.
Install termination — concentric pipes

1. Assemble the vent termination as described for concentric terminations, on page 35.

 WARNING If necessary, you can shorten the lengths of the inner and outer pipes for a shorter finished assembly. But you must ensure the pipes butt correctly at both ends. Failure to properly assemble the concentric termination can result in flue gas recirculation, causing possible severe personal injury or death.

2. Wall penetration:
 a. Preferably, use a thimble with a 4½-inch hole. If not using a thimble, carefully use a hole saw to cut a hole not larger than 4½ inches in diameter through the wall. The finished hole must provide a solid stop for the rain cap ribs, as shown in the inset to Figure 30.

 WARNING Ensure that the wall material is strong enough to prevent the rain cap from being pushed inward if struck or pushed from the outside.

3. Secure the termination in place so the rain cap will butt against the outside wall or outer thimble plate as shown in Figure 30, page 30.

4. Before beginning vent and air piping from the boiler to the concentric termination, mount and secure the concentric termination as shown in Figure 30, page 30.

 WARNING The vent and air piping must be securely supported, and must not rest its weight on the boiler fittings. Failure to properly support the vent and air piping could result in vent piping damage, resulting in possible severe personal injury, death or substantial property damage.

 The supports/bracing used must support the termination assembly to prevent slippage or movement. See instructions provided with concentric kit for details.

 The clamps used on the outside of the termination pipe must not cut into the pipe or contain sharp edges that could cause a crack to form.

 WARNING When inserting the partially-assembled termination kit through the wall penetration, wrap plastic or other protection over the end of the exposed assembly to prevent debris from entering the pipes. If the air passages become blocked, the boiler will not operate. Once the rain cap has been cemented to the assembly, there is no way to correct the problem. The assembly would have to be replaced if it were cut to be removed and cleaned. Altering the assembly in any way could result in severe personal injury or death due to toxic flue product emissions.

 WARNING If using AL29-4C stainless vent pipe, use the vent pipe manufacturer’s PVC adapter if connecting to a PVC concentric vent attachment.

5. After the assembly has been positioned in the opening and all supports have been attached, install a bird screen (purchased separately if not included with the kit) and rain cap as follows:
 a. Place the bird screen on the end of the inner pipe as in Figure 36, page 35, or per concentric kit instructions for polypropylene kits.
 b. Cement the rain cap in place as shown.

Figure 29 Termination location — concentric termination — multiple boilers — clearance from vent of one to air intake of the next

Figure 30 Installing and supporting the concentric sidewall vent assembly

LEGEND

1	Vent pipe
2	Air pipe
3	Wall
4	Outer thimble plate
5	Supports every 5 feet or per vent pipe mfr’s instructions
6	Wall brace, by installer, (or see vent pipe mfr’s instructions)
7	Thimble, by installer
8	Rain cap
9	Rain cap ribs must butt against outer thimble plate or wall opening
DIRECT VENT — Vertical with separate pipes

Allowable vent/air pipe materials & lengths

WARNING Use only the vent materials and kits listed in Figure 18, page 21. Provide pipe adapters if specified.

1. Locate the terminations such that the total air piping and vent piping from the boiler to the termination will not exceed the maximum length given in Figure 17, page 20.

Polypropylene For polypropylene applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transition pieces at the boiler vent and air connections. Install a locking collar at every joint.

AL29-4C S.S. For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide a 3” PVC transition piece at the boiler vent connection. The air piping must be PVC or CPVC. Provide a 3” PVC transition piece at the boiler air connection if using 2” air piping.

Determine termination location

1. The air and vent terminations must be installed as shown in Figure 31.
2. The terminations must comply with clearances and limitations shown in Figure 19, page 23.
3. Locate the terminations so they are not likely to be damaged by foreign objects, such as stones or balls, or subject to buildup of leaves or sediment.

Multiple vent/air terminations (Figure 32)

1. When terminating multiple WM97+ boilers, terminate each vent/air connection as described in this section.

WARNING Terminate all vent pipes at the same height and all air pipes at the same height to avoid possibility of severe personal injury, death or substantial property damage.

2. Place roof penetrations to obtain minimum clearance of 12 inches between edge of air intake elbow and adjacent vent pipe of another boiler for U. S. installations (see Figure 32, page 32). For Canadian installations, provide clearances required by CSA B149.1 or B149.2 Installation Code and a ULC S636 compliant vent kit.
3. The air inlet of a WM97+ boiler is part of a direct vent connection. It is not classified as a forced air intake with regard to spacing from adjacent boiler vents.

Figure 31 Separate pipes vertical termination

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Read and follow all instructions in this manual. DO NOT proceed with vent/air installation until you have read page 19 through page 24. See notices at left.</td>
</tr>
<tr>
<td>2</td>
<td>Install the boiler in a location that allows proper routing of all vent and air piping to the selected sidewall location.</td>
</tr>
<tr>
<td>3</td>
<td>Make sure the selected vertical termination location complies with Figure 19, page 23. (Multiple boiler terminations must also comply with Figure 32, page 32.)</td>
</tr>
<tr>
<td>4</td>
<td>Use only the vent materials listed in Figure 18, page 21. Provide pipe adapters where required. Vent piping and air piping lengths must not exceed the values shown in Figure 17, page 20.</td>
</tr>
<tr>
<td>5</td>
<td>Prepare the vertical penetrations and secure penetration components as instructed in this section. See “Prepare roof penetrations” on page 32 and “Termination and fittings” on page 32.</td>
</tr>
<tr>
<td>6</td>
<td>The air piping must terminate in a 180-degree return bend or down turned elbow as shown above. The vent piping must terminate in a coupling pointed upward as shown above.</td>
</tr>
<tr>
<td>7</td>
<td>Install vent and air piping between the boiler and the vertical terminations. Slope horizontal piping downward toward the boiler at least 1/4 inch per foot. Install pipe supports every 5 feet on both the horizontal and vertical runs. Install a hanger support within 6 inches of any upturn in the piping. See page 36 for general guidelines. Also comply with vent pipe manufacturer’s instructions. See notices at left.</td>
</tr>
<tr>
<td>8</td>
<td>Insert the vent and air piping through the vertical penetrations and secure the termination fittings.</td>
</tr>
<tr>
<td>9</td>
<td>Maintain clearances shown above. Vent and air terminations must be fitted with a bird screen as shown.</td>
</tr>
</tbody>
</table>

WARNING USE SWEEP ELBOWS FOR ALL VENT AND AIR PIPING — DO NOT use short radius elbows for vent or air piping. Boiler performance could be affected.
Prepare roof penetrations
1. Air pipe penetration:
 a. Cut a hole for the air pipe. Size the air pipe hole as close as
 desired to the air pipe outside diameter.
2. Vent pipe penetration:
 a. Cut a hole for the vent pipe. For either combustible or non-
 combustible construction, size the vent pipe hole at least 0.4”
 larger than the vent pipe diameter.
 b. Insert a galvanized metal thimble in the vent pipe hole.
3. Space the air and vent holes to provide the minimum spacings
 shown in Figure 25, page 27.
4. Follow all local codes and vent pipe manufacturer’s instructions
 for isolation of vent pipe when passing through floors, ceilings
 and roofs.
5. Provide flashing and sealing boots sized for the vent pipe and air
 pipe. Follow all vent pipe manufacturer’s instructions.

Termination and fittings
1. Prepare the vent termination elbow and the air termination elbow
 (Figure 31, page 31) by inserting bird screens. Bird screens must be
 purchased separately. See the parts list at the end of this manual
 for part numbers.
2. The air piping must terminate in a down-turned 180-degree re-
 turn bend as shown in Figure 31, page 31. Locate the air inlet pipe
 no further than 12 inches from the center of the vent pipe. This
 placement avoids recirculation of flue products into the combus-
 tion air stream.
3. The vent piping must terminate in an up-turned coupling as shown
 in Figure 31, page 31. The top of the coupling must be at least 1
 foot above the air intake. The air inlet pipe and vent pipe can be
 located in any desired position on the roof, but must always be no
 further than 12 inches apart and with the vent termination at least
 1 foot above the air intake.
4. Maintain the required dimensions of the finished termination
 piping as shown in Figure 31, page 31.
5. Do not extend exposed vent pipe outside of building more than
 shown in this document. Condensate could freeze and block vent
 pipe.

Figure 32 Terminations for multiple boilers

12” minimum between edge of air intake pipe and adjacent vent pipe
from another boiler

Also maintain maximum distances between the vent and air pipes for each boiler as shown
in Figure 25, page 27.
ALLOWABLE VENT/ AIR PIPE MATERIALS & LENGTHS

1. The concentric termination kit must be purchased separately.

WARNING Use only the vent materials and kits listed in Figure 18, page 21. Provide pipe adapters if specified.

2. Locate the termination such that the total air piping and vent piping from the boiler to the termination will not exceed the maximum length given in Figure 17, page 20.

3. This termination requires a 45-degree elbow that is not supplied with the termination kit. The maximum vent/air pipe lengths include allowance for this elbow.

Polypropylene

For polypropylene applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transitions at the boiler vent and air connections and at the termination if using a 3” PVC concentric vent kit. Install a locking collar at every joint.

AL29-4C S.S.

For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transitions at the boiler vent connection. Air pipe must be PVC or CPVC. Provide a 3” PVC transition at the boiler air connection if using 2” air pipe. Provide transition pieces to PVC at the vent and air pipe termination connections.

DETERMINE TERMINATION LOCATION

Locate the concentric vent/air termination using the following guidelines:

1. The concentric vent/air assembly must terminate as shown in these instructions.

2. The termination must comply with the clearances and limitations shown in Figure 19, page 23.

3. Locate the termination so it is not likely to be damaged by foreign objects, such as stones or balls, or subject to buildup of leaves or sediment.

4. For Canadian installations, follow requirements of CSA B149.1 or B149.2 Installation Code and a ULC S636 compliant vent kit.

MULTIPLE VENT/ AIR TERMINATIONS

1. When terminating multiple WM97+ boilers, install the concentric vent/air termination assemblies as described in this manual.

WARNING All vent outlets must terminate at the same height to avoid possibility of severe personal injury, death or substantial property damage.

WARNING Do not use short radius elbows for vent or air piping. Boiler performance could be affected.
2. Place roof penetrations to obtain minimum of 12 inches between centers of adjacent vent pipe of another boiler for U.S. installations (see Figure 34, page 34).
3. The air inlet of a WM97+ boiler is part of a direct vent connection. It is not classified as a forced air intake with regard to spacing from adjacent boiler vents.

Prepare roof penetrations
1. Roof penetration hole:
 a. Cut a clearance hole to clear the termination outside diameter as prescribed in the kit instructions.
 b. Insert a galvanized metal thimble in the vent pipe hole.
2. Follow all local codes for isolation of vent pipe when passing through floors, ceilings and roofs.
3. Provide flashing and sealing boots sized for the concentric termination outside diameter.

Mount concentric termination
1. Mount the termination as shown in Figure 35.
2. Support the concentric vent/air termination at the roof penetration as shown in Figure 35 or per concentric kit instructions.
 • The supports/bracing used must support the termination assembly to prevent vertical slippage or sideways movement.
 • The clamps used on the outside of the termination pipe must not cut into the pipe or contain sharp edges that could cause a crack to form.

⚠️ WARNING
The vent and air piping must be securely supported, and must not rest its weight on the boiler fittings. DO NOT drill or screw into either the vent pipe or air pipe. Failure to properly support the vent and air piping could result in vent piping damage, resulting in possible severe personal injury, death or substantial property damage.

⚠️ WARNING
When inserting the partially-assembled termination kit through the roof penetration, wrap plastic or other protection over the end of the exposed assembly to prevent debris from entering the pipes. If the air passages become blocked, the boiler will not operate. Once the rain cap has been cemented to the assembly, there is no way to correct the problem. The assembly would have to be replaced if it were cut to be removed and cleaned. Altering the assembly in any way could result in severe personal injury or death due to toxic flue product emissions.

⚠️ WARNING
If using AL29-4C stainless vent pipe, use the vent pipe manufacturer’s PVC adapter if connecting to a PVC concentric vent attachment.

⚠️ WARNING
Do not connect any other appliance to the vent pipe or multiple boilers to a common vent pipe.
3. After the assembly has been positioned in the roof opening and all supports have been attached, install a bird screen (purchased separately if not included with the kit) and rain cap as follows:
 a. Place the bird screen on the end of the inner pipe as in Figure 36, page 35, or per kit instructions for polypropylene kits.
 b. Cement the rain cap in place.
Concentric termination, typical
(sidewall or vertical)

Figure 36 PVC concentric termination assembly — DO NOT attach the rain cap until the termination has been inserted through the roof or wall and all supports have been installed. See LEGEND at right. See kit instructions for details of polypropylene kits.

LEGEND for Figure 36
1 — Inner PVC pipe (vent)
2 — Outer PVC pipe (air)
3 — Rain cap
4 — Bird screen
5 — Y fitting
6 — Finished assembly

Assembling concentric termination

1. Follow all instructions provided with the concentric termination kit. The following are general guidelines for information only.

2. See Figure 36 for the typical assembly of a concentric termination assembly.

3. Prepare the bird screen, item 4 (purchase separately if not included with the kit). Cut the bird screen to size if required. If the bird screen must be trimmed, cut the bird screen to fit the outside diameter of the PVC inner pipe supplied with the termination kit.

4. Partially assemble the vent termination kit in the sequence shown in Figure 36, or per the concentric kit instructions.

WARNING DO NOT install the rain cap and bird screen until the assembly has been inserted through the roof (or sidewall) and all supports have been installed. Follow instructions to cover the end of the assembly with plastic before inserting through the roof penetration to prevent debris from blocking the air passages.

WARNING If necessary, you can shorten the lengths of the inner and outer pipes for a shorter finished assembly. But you must ensure the pipes butt correctly at both ends. Failure to properly assemble the concentric termination can result in flue gas recirculation, causing possible severe personal injury or death.

Polypropylene For polypropylene applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transitions at the boiler vent and air connections and at the termination if using a PVC concentric vent kit.

AL29-4C S.S. For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide a 3” PVC transition at the boiler vent connection. Air pipe must be PVC or CPVC. Provide a 3” PVC transition at the boiler air connection if using 2” air pipe. Provide transition pieces to PVC at the vent and air pipe termination connections.
Vent and air piping and boiler connections

Follow termination instructions
1. Read and follow all instructions for the termination type used before proceeding with this page. Follow all instructions provided by vent pipe manufacturer.

WARNING Use only materials from the manufacturers listed in Figure 18, page 21.

Installing vent and air piping

For polypropylene applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide 3” PVC transition pieces at the boiler vent and air connections, and also at the termination if using the W-M termination plate. Provide 2” or 3” PVC transitions at the termination if using a PVC concentric vent kit. Install a locking collar at every joint.

For AL29-4C vent pipe applications, comply with any additional requirements in the vent system manufacturer’s instructions. Provide a 3” PVC transition piece at the boiler vent connection. Air piping must be PVC or CPVC. Connect to the boiler air piping only with 3” PVC (use a transition piece for 2” air pipe). Provide 3” PVC connections at the termination if using the W-M termination plate. Provide 2” or 3” PVC transitions at the termination if using a PVC concentric vent kit.

1. Work from the boiler to vent or air termination. Do not exceed the lengths given in the previous pages for either the air or vent piping.
2. See Figure 37 for attaching vent (and air) pipes at the boiler. Connections must be 3” PVC or CPVC only — use transitions if needed to adapt to other material or size (2”).
3. Cut pipe to required lengths.
4. Dry assemble entire vent or air piping to ensure proper fit before assembling any joint.
5. Maintain minimum clearance of ½ inch between vent pipe and any combustible wall or material.
6. Seal wall or floor penetration openings following local code requirements.
7. Assembling PVC or CPVC: (Polypropylene AL29-4C S.S. — follow pipe manufacturer’s instructions for preparation and assembly)
 a. Debur inside and outside of pipe ends.
 b. Chamfer outside of each pipe end to ensure even cement distribution when joining.
 c. Clean all pipe ends and fittings. Dry thoroughly.
 d. For each joint:
 x Handle fittings and pipes carefully to prevent contamination of surfaces.
 x Apply primer liberally to both joint surfaces — pipe end and fitting socket.
 x While primer is still damp, lightly apply approved cement to both surfaces in a uniform coating.
 x Apply a second coat to both surfaces. Avoid using too much cement on sockets to prevent cement buildup inside.
 x With cement still wet, insert pipe into fitting, twisting ¼ turn. Make sure pipe is fully inserted.
 x Wipe excess cement from joint. Check joint to be sure a smooth bead of cement shows around the entire joint.

WARNING ADAPTERS — Use adapters if using other than 3-inch PVC or CPVC. This is required for different materials or if using 2-inch pipe.
1. Use ONLY 3” PVC or CPVC pipe at boiler connections.
2. Clean and deburr inside and outside of both ends of air and vent pipes. Chamfer boiler end of vent pipe for ease of insertion.
3. Inspect vent or air adapter (above) — verify no obstructions or foreign objects inside.
4. Loosen clamp screw.
5. Measure 3½ inches from end of pipe and make a mark with felt-tip pen.
7. Apply small amount of silicone grease to end of pipe to ease insertion.
8. Insert pipe into adapter.
9. Slide pipe down until the 3½-inch mark is reached.
10. Secure vent or air pipe by tightening the adapter clamp securely. Do not overtighten.
11. The seal is accomplished with the internal gasket. The clamp is only to hold the pipe in place.

WARNING USE SWEEP ELBOWS FOR ALL VENT AND AIR PIPING — DO NOT use short radius elbows for vent or air piping. Boiler performance could be affected.
Install water piping

WARNING Use two wrenches when tightening water piping at boiler, using one of the wrenches to prevent the boiler interior piping from turning. Failure to support the boiler piping connections to prevent them from turning could cause damage to boiler components.

General piping information

Additional controls, if required

NOTICE The WM97+ control uses temperature sensors to provide both high limit protection and modulating temperature control. The control’s high limit function requires manual reset. Some codes/jurisdictions may require additional external controls for high limit and/or low water cutoff protection.

Additional limit controls

Following standard industry practices, if installation is to comply with ASME or Canadian requirements, an additional high temperature limit may be needed. Consult local requirements for other codes/standards to determine if needed.

1. Install a manual reset high temperature limit constructed to prevent a temperature setting above 200°F in system supply piping between boiler and isolation valve. (Note that the WM97+ control operating limit function shuts the boiler down at 195°F, or lower if set to a lower value.)

WARNING Multi-temperature systems — If the heating system includes circuits that require lower temperature water (radiant slab circuits, for example) as well as higher temperature circuits, it is recommended to protect low-temperature circuits with limit controls that are wired to a WM97+ control external limit circuit terminals.

2. See instructions beginning on page 64 for wiring information.

3. If using a manual reset limit control or wiring in the manual reset circuit, set WM97+ control boiler limit at least 20°F less than the external manual reset limit (i.e., set WM97+ control no higher than 180°F for a 200°F external limit, for example).

Backflow preventer

1. Use backflow preventer in the cold water supply piping if required by local codes.

Internal expansion tank (WM97+70 or 110 only, not on WM97+155)

1. The WM97+70 and 110 boilers are equipped with an internal expansion tank, factory charged to 12 PSIG.

2. The internal expansion tank is suitable for most systems with total volume of 15 gallons or less. See page 42 for suggestions for adding additional a supplementary expansion tank for higher-volume systems.

3. The maximum operating pressure of the internal expansion tank is 42.5 PSIG.

WARNING The internal expansion tank isolation valve must be turned off during hydrostatic testing.

The internal expansion tank valve MUST BE OPEN DURING ALL TIMES OF OPERATION.

System water piping methods

NOTICE Except as shown on page 44, all piping methods shown in this manual use primary/secondary connection to the boiler loop.

These designs ensure proper flow through the WM97+ boiler to provide the most efficient and reliable operation of the boiler and the heating system.

System/zone pipe sizing

(Baseboard, convectors or cast iron radiators ONLY)

1. For residential space heating applications (other than radiant heating or unit heaters) ONLY, you can use the sizing suggestions in Figure 38.

Figure 38 Suggested pipe sizing for system headers and zone piping — RESIDENTIAL with baseboard, convectors or cast iron radiators ONLY (20°F temperature rise)

<table>
<thead>
<tr>
<th>WM97+ Model</th>
<th>System header</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1” or larger</td>
</tr>
<tr>
<td>110 or 155</td>
<td>1¼” or larger</td>
</tr>
</tbody>
</table>

Recommendations are based on a 20°F temp drop through the system.

Suggested maximum load per zone

<table>
<thead>
<tr>
<th>Copper pipe and baseboard size</th>
<th>Maximum recommended feet of baseboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾”</td>
<td>106</td>
</tr>
<tr>
<td>1”</td>
<td>179</td>
</tr>
</tbody>
</table>

Size zone circulators to handle the required flow and head loss for each zone.
Install water piping (continued)

Head loss through boiler internal piping

Top boiler connections (internal by-pass valve OPEN)
1. See Figure 39 for the head loss through boiler internal piping for boiler top connections. This data is based on primary/secondary piping (boiler internal by-pass valve OPEN).
2. For the special case of direct connection of WM97+70 or 110 boilers, see the information on page 44.

![Figure 39](link) Head loss through boiler internal piping for top boiler connections

<table>
<thead>
<tr>
<th>WM97+70 or 110</th>
<th>WM97+155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate (GPM)</td>
<td>Head loss (Feet W. C.)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>12</td>
<td>1.7</td>
</tr>
<tr>
<td>14</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Bottom boiler connections
1. See Figure 40 for the head loss through boiler internal piping for boiler bottom connections.

![Figure 40](link) Head loss through boiler internal piping for bottom connections

<table>
<thead>
<tr>
<th>WM97+70 or 110</th>
<th>WM97+155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate (GPM)</td>
<td>Head loss (Feet W. C.)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>2.3</td>
</tr>
<tr>
<td>14</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Boiler circulator
1. The boiler circulator is factory-installed in the boiler as shown in this manual. The boiler circulator is selected to ensure adequate flow through the WM97+ boiler.

WARNING DO NOT relocate or use the boiler circulator in any way other than shown in this manual.

Failure to comply could result in unreliable performance and nuisance shutdowns from insufficient flow.

System circulators and zone circulators
1. Install a system circulator or zone circulators as shown in the piping diagrams in this manual. These circulators must be supplied by the installer.

System or zone circulator flow rate
1. Size circulators based on the flow rate required to achieve the temperature change needed.
2. You can closely estimate temperature rise (or drop) through a circuit by using the following formula, where TD is temperature rise (or drop), FLOW is flow rate (in gpm), and BTUH is the heat load for the circuit:

\[\text{FLOW} = \frac{\text{BTUH}}{\text{TD} \times 500} \]

Examples:
1. Consider a system loop for a system with total heating load equal to 210,000 Btu/h. The desired temperature drop through the system piping is 20°F. Then the required flow rate is:

\[\text{FLOW} = \frac{210,000}{20 \times 500} = 21 \text{ gpm} \]

Simplified:
For 20° temperature drop, FLOW = MBH / 10.

System or zone circulator head requirement
1. The circulator must be capable of delivering the required flow against the head loss that will occur in the piping.
2. Determine the pipe size needed and the resultant head loss using accepted engineering methods.
3. The simplified pipe sizing here is limited to residential systems, and does not include systems with fan coil units or radiant tubing.

CAUTION The following simplified method for pipe and circulator sizing must be limited to residential applications using baseboard (finned or cast iron), cast iron radiators or convector. DO NOT apply for radiant heating, fan coil units or commercial installations.
Install water piping (continued)

Simplified pipe/circulator selection
1. Install the boiler and piping using the recommended piping layouts shown in this manual.
2. Size the piping and components for each circuit in the space heating system using Figure 41. **At the flow rates listed, the head loss in all piping will be 0.04 feet per foot of pipe.**
 a. Determine the heating load (Btu/h) for each circuit.
 b. Calculate the flow rate for each circuit using its load.
 c. To use a 20°F temperature drop, just divide the MBH (1,000’s of Btu/h) by 10.
 d. Example — Flow for 20°F temp drop with 35,000 Btu/h:
 \[\text{FLOW} = \frac{35 \text{ MBH}}{10} = 3.5 \text{ gpm} \]
 e. Find the pipe size in Figure 41 that has a max flow rate just larger than that required for the circuit.
 f. Find the total equivalent length (TEL) of the circuit.
 g. TEL accounts for losses through fittings and valves by using the equivalent length of pipe that would cause the same head loss. Add these numbers to the measured length of the circuit to find TEL in feet.
 h. **TEL is usually close to 1.5 times the length of the circuit for residential baseboard, radiator or convector applications.**
 i. Measure the length of each circuit from the circulator outlet back to its inlet. Then multiply this length times 1.5 to get the approximate TEL of the circuit.
 j. Find the head loss for each circuit:
 \[\text{HEAD} = (\text{HEAD} = 1.5 \times \text{Circuit Length} \text{ (feet)}) \]
 k. NOTE: Size system header piping for the total flow of all connected zones.
3. Example:
 a. For a circuit with heating load = 45,000 Btu/h (= 45 MBH). Measured length of circuit is 88 feet.
 b. Flow = 45 MBH / 10 = 4.5 gpm.
 c. TEL = 1.5 x 88 feet = 132 feet.
 d. From Figure 41, select 1” pipe (max flow = 7.1 gpm).
 e. Head loss = TEL x 0.04 = 132 x 0.04 = 5.28 feet.
 f. Select a circulator that can deliver at least 4.5 gpm at a head of 5.28 feet. (Read the NOTICE below.)

NOTICE To use this method, limit the flow through ¾” finned-tube baseboard to 3.9 gpm, or use 1” baseboard and limit flow to 7.1 gpm. If the total load of the circuit requires more flow, split the circuit into two or more.

![Figure 41](image)

Install relief valve
1. Install relief valve in ¾” street elbow piped from boiler supply piping (Figure 6, page 13).
2. Pipe the relief valve only as shown, in the location shown.
3. Connect discharge piping to safe disposal location, following guidelines in the **WARNING** below.

WARNING To avoid water damage or scalding due to relief valve operation, as per local or state codes:

Install relief valve ONLY with the spindle vertical, as shown in illustrations in this manual.

Discharge line must be connected to relief valve outlet and run to a safe place of disposal. Terminate the discharge line in a manner that will prevent possibility of severe burns or property damage should the valve discharge. Locate away from the top of the boiler.

Discharge line must be as short as possible and be the same size as the valve discharge connection throughout its entire length.

Discharge line must pitch downward from the valve and terminate at least 6” above the floor drain where any discharge will be clearly visible.

The discharge line shall terminate plain, not threaded, with a material serviceable for temperatures of 375 °F or greater.

Do not pipe the discharge to any place where freezing could occur.

No shutoff valve shall be installed between the relief valve and boiler, or in the discharge line. Do not plug or place any obstruction in the discharge line.

Test the operation of the valve after filling and pressurizing system by lifting the lever. Make sure the valve discharges freely. If the valve fails to operate correctly, replace it with a new relief valve.

Failure to comply with the above guidelines could result in failure of the relief valve to operate, resulting in possibility of severe personal injury, death or substantial property damage.
Internal water piping — WM97+70 and 110

Set primary/secondary by-pass valve
WM97+70 or 110 only

1. The primary/secondary by-pass valve (item 5 in the illustrations at right) allows selecting whether the boiler is direct-connected or primary/secondary connected to the system.
 a. Close the valve for direct connection (Figure 42). Use this option ONLY if the system piping is connected per the instructions in this manual.
 b. Open the valve for primary/secondary connection (Figure 43).

WARNING

The boiler relief valve MUST be piped only to the boiler supply connection. **DO NOT** pipe to the return connection. Install relief valve in ¾” street elbow piped from boiler supply piping tee (Figure 6, page 13). Pipe the relief valve only as shown in the location shown in Figure 6, page 13. Failure to comply could prevent the relief valve from properly protecting the boiler, resulting in possible severe personal injury, death or substantial property damage.

WARNING

DO NOT operate the boiler with the valve closed on a system that is zoned with circulators or if the system has a separate system circulator. This could cause the boiler circulator to operate in series with external circulators, causing possible excess pressure on valves and system components.

Operate with the by-pass closed (using boiler circulator for system flow) ONLY where shown on application instructions in this manual.

DO NOT remove or relocate the boiler circulator. **DO NOT** attempt to change the boiler internal piping.

Failure to comply with the above could result in severe personal injury, death or substantial property damage.

Legend for Figure 42 and Figure 43

1. Heat exchanger
2. Return entrance to heat exchanger
3. Supply exit from heat exchanger
4. Boiler circulator — **DO NOT** REMOVE OR RELOCATE!
5. Primary/secondary by-pass valve — **OPEN** for primary/secondary piping; CLOSED for direct connection
6. Supply connection to heating system (P/T gauge and relief valve must be mounted to supply as shown in Figure 6, page 13)
7. Return connection from heating system
8. Boiler water supply connection to DHW storage tank, if used — requires separate external circulator to provide flow for the DHW tank
9. Boiler water return connection from DHW storage tank, if used

Figure 42 WM97+70/110 internal piping with by-pass valve CLOSED (boiler circulator provides system flow) — some components omitted for clarity — see legend below left

Figure 43 WM97+70/110 internal piping with by-pass valve OPEN (primary/secondary connection — separate system pump (or zone pumps) must be supplied — some components omitted for clarity — see legend below left
Internal water piping — WM97+155

Set primary/secondary by-pass valve WM97+155 only

WARNING The internal primary/secondary valve MUST be OPEN for all applications except for installations with multiple WM97+ boilers, piped as shown in this manual.

WARNING Single-boiler installations require a separate system circulator (or zone circulators). DO NOT attempt to use the boiler internal circulator for system circulation.

WARNING The boiler relief valve MUST be piped only to the boiler supply connection. DO NOT pipe to the return connection. Install relief valve in ¾” street elbow piped from boiler supply piping tee (Figure 6, page 13). Pipe the relief valve only as shown, in the location shown in Figure 6, page 13. Failure to comply could prevent the relief valve from properly protecting the boiler, resulting in possible severe personal injury, death or substantial property damage.

DO NOT remove or relocate the boiler circulator.

DO NOT attempt to change the boiler internal piping.

Failure to comply with the above could result in severe personal injury, death or substantial property damage.

1. The primary/secondary by-pass valve (item 5 in the illustrations at right) is always left OPEN unless the boiler is connected to a multiple-boiler manifold (and the internal circulator provides flow only in the interconnecting piping between the boiler and the manifold).
 a. Single-boiler installation — Open the valve for primary/secondary connection (Figure 44).
 b. Multiple-boiler installation — Close the valve for direct connection to the multiple-boiler manifold (Figure 45).

<table>
<thead>
<tr>
<th>Legend for Figure 44 and Figure 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Heat exchanger</td>
</tr>
<tr>
<td>2 Return entrance to heat exchanger</td>
</tr>
<tr>
<td>3 Supply exit from heat exchanger</td>
</tr>
<tr>
<td>4 Boiler circulator — DO NOT REMOVE OR RELOCATE!</td>
</tr>
<tr>
<td>5 Primary/secondary by-pass valve — OPEN for primary/secondary piping CLOSED for direct connection (MBS only)</td>
</tr>
</tbody>
</table>

Figure 44 WM97+155 internal piping with by-pass valve OPEN — (primary/secondary connection — separate system pump (or zone pumps) must be supplied — some components omitted for clarity — see legend above right

Figure 45 WM97+155 internal piping with by-pass valve CLOSED — Multiple-boiler applications ONLY (boiler circulator provides flow to and from primary/secondary manifolds) — some components omitted for clarity — see legend above right
Expansion tank — WM97+70 and 110

Supplementary expansion tank, if required — systems having volumes more than 15 gallons only

1. The boiler is equipped with an internal diaphragm-type expansion tank, factory charged to 12 PSIG.
 a. The internal tank is suitable for systems up to 15 gallons, not including the volume of water in the boiler and its internal piping.
 b. This should be adequate for finned-tube baseboard systems and most radiant heating systems.
 c. Existing expansion tanks should be left in place even if additional expansion tank capacity is not needed for the system.

 CAUTION

 For larger volume systems, such as systems with radiators or cast iron baseboard, provide an additional expansion tank sufficient for the system volume. Undersized expansion tanks cause system water to be lost from relief valve and make-up water to be added through fill valve. Eventual boiler failure can result due to excessive make-up water addition.

2. If the system does not have an existing expansion tank, add a diaphragm or bladder-type tank, piped as in Figure 46. Always install an automatic air vent on top of the air separator to remove residual air from the system.

 NOTICE

 If using diaphragm or bladder tanks only — if the boiler is installed above the system main piping, install an automatic air vent in the top of the outgoing boiler piping to prevent air pocketing.

 CAUTION

 Follow the expansion tank manufacturer’s sizing and application guidelines

Existing expansion tanks

1. An existing expansion tank should be piped as in Figure 46 for diaphragm or bladder-type tanks, or Figure 47 for a closed-type expansion tank.

 CAUTION

 DO NOT install automatic air vents on closed-type expansion tank systems. Air must remain in the system and return to the tank to provide its air cushion. An automatic air vent would cause air to leave system, resulting in water-logging the expansion tank. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent

 NOTICE

 If possible, replace an existing closed-tanks with a diaphragm or bladder-type expansion tank. Closed-type tanks often cause air removal problems.

LEGEND for Figure 46 and Figure 47

1	WM97+ boiler
2	Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information
3	Relief valve piping to drain — see page 39
4	Isolation valves
5	Supplementary expansion tank, diaphragm type, if used
6	Air separator
7	Flow/check valve (in boiler circulator)
8	Purge/drain valves
9	Boiler circulator
10	Primary/secondary by-pass valve — see page 40 for information
11	Supplementary expansion tank, closed-type, if used
12	Make-up water supply
13	Backflow preventer, if used
14	Pressure reducing valve, if used
15	Internal expansion tank, diaphragm-type
16	Quick-fill valve, if used
17	DHW boiler water supply connection, when used — see page 13 for information
18	DHW boiler water return connection, when used — see page 13 for information
19	Pressure/temperature gauge, supplied with boiler, field piped
Expansion tank — WM97+155

Expansion tank

Figure 48 and Figure 49 show typical installations of the system expansion tank. Always locate the air separator and expansion tank as shown in the suggested piping drawings, beginning on page 47.

Ensure that the expansion tank size will handle boiler and system water volume and temperature. See tank manufacturer’s instructions and ratings for details. Additional tanks may be added to the system if needed to handle the expansion. These tanks may be installed by connecting to tees in the system piping.

⚠️ CAUTION ⚠️ **Undersized expansion tanks** cause system water to be lost from the relief valve and makeup water to be added through the fill valve. Eventual boiler failure can result due to excessive make-up water addition. Always locate the *cold water fill connection* at the expansion tank. Never locate this elsewhere in the system.

Diaphragm- or bladder-type tank:

Refer to Figure 48 for suggested piping when using a diaphragm- or bladder-type expansion tank.

⚠️ NOTICE ⚠️ **Diaphragm- or bladder-type expansion tank** — Control fill pressure with the tank air charge pressure. Always check pressure and charge tank *with tank removed from system* to be sure reading is accurate. Boiler relief valve is set for 30 PSIG. Operating pressure of system, after temperature expansion above cold fill pressure, should not exceed 24 PSIG to avoid weeping of relief valve.

Install an **automatic air vent** on top of the air separator, per separator manufacturer’s instructions.

Closed-type expansion tank:

⚠️ CAUTION ⚠️ **DO NOT** use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

Figure 49 shows suggested piping when using a closed-type expansion tank, in which the air is directly in contact with tank water.

Connect piping (½” or ¾”) from the air separator top outlet to the tank fitting. Slope any horizontal piping a minimum of 1 inch per 5 feet of horizontal pipe.

Always use a **tank fitting**, such as the B&G *Tanktrol* or Taco *Taco-Trol* (shown). The fitting reduces gravity flow of water in the piping to the tank, avoids air bubbling through the tank water, and provides the proper fill height in the tank.

⚠️ CAUTION ⚠️ **Correct all leaks** in the system or tank piping. Leaks allow air to escape from the system and will cause water-logging of the tank. This will result in water loss through the boiler relief valve due to over-pressurization. **NEVER** use an automatic air vent in a system equipped with a closed-type expansion tank. The air removed from the system will cause water-logging of the expansion tank.

⚠️ NOTICE ⚠️ **Closed-type expansion tank** — Follow tank manufacturer’s instructions for *filling the tank*. Typical tank sizing provides for approximately 12 PSIG when the tank is filled to the normal level and system water is cold. Note that boiler relief valve is set for 30 PSIG. Operating pressure of system, after temperature expansion above cold fill pressure, should not exceed 24 PSIG to avoid weeping of relief valve.

LEGEND for Figure 48 and Figure 49

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WM97+ boiler</td>
</tr>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
</tr>
<tr>
<td>8</td>
<td>System expansion tank, diaphragm type, when used</td>
</tr>
<tr>
<td>9</td>
<td>Air separator</td>
</tr>
<tr>
<td>10</td>
<td>Flow/check valve (in boiler circulator)</td>
</tr>
<tr>
<td>11</td>
<td>Purge/drain valves</td>
</tr>
<tr>
<td>12</td>
<td>Boiler circulator</td>
</tr>
<tr>
<td>14</td>
<td>Primary/secondary by-pass valve — see page 41 for information</td>
</tr>
<tr>
<td>15</td>
<td>System expansion tank, closed-type, when used</td>
</tr>
<tr>
<td>20</td>
<td>Make-up water supply</td>
</tr>
<tr>
<td>23</td>
<td>Backflow preventer, when used</td>
</tr>
<tr>
<td>25</td>
<td>Pressure reducing valve, when used</td>
</tr>
<tr>
<td>27</td>
<td>Quick-fill valve, when used</td>
</tr>
<tr>
<td>28</td>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>29</td>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>30</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
</tr>
<tr>
<td>31</td>
<td>System circulator, supplied by installer</td>
</tr>
</tbody>
</table>
System piping

ZONE VALVE zoning — direct connection
Internal P/S by-pass valve CLOSED
WM97+70 or 110 only

The WM97+70 or 110 boiler internal circulator can be used to circulate many heating systems using the arrangement shown in Figure 50 and in Figure 51, page 45.

Verify the application will work:

To determine if direct connection will provide enough flow for the system, use Figure 52, page 45. Pay careful attention to the following:

- **MAIN LINE SIZING** — Use at least the size shown for mains.
- **BRANCH LINES** — Branch lines must be at least ¾ inch, as shown.
- **TOTAL FLOW** — This is the total flow to the system at a 20°F temperature drop.
- **CIRCULATOR HEAD AVAILABLE** — This is the head available to overcome head loss through the piping. (This equals circulator capacity minus boiler internal flow losses.)

INFORMATION APPLICABLE ONLY TO BASEBOARD SYSTEMS:

- **MINIMUM NUMBER OF CIRCUITS** — The system must be split into no less than this number of circuits — to limit the flow to either the maximum for ¾” piping or the maximum the circulator can handle with its available head.
- **MAXIMUM FLOW PER CIRCUIT** — This is the highest flow acceptable for any one circuit. If a circuit requires higher flow, split the circuit into multiple circuits that all have flow within the limit. If this cannot be done, the circuit must be piped as primary/secondary per Figure 53, page 46.
- **MAXIMUM LOAD OF ANY CIRCUIT** — This is determined from the maximum flow for any circuit (BTUH = GPM x 500 x 20°F).
- **MAXIMUM FEET BASEBOARD** — This is determined from the maximum load, assuming baseboard output of 600 Btu/h per foot).
- **MAXIMUM CIRCUIT LENGTH** — This is the maximum total length of any circuit, measured along the piping, beginning at the boiler, along the main line, through the heating branch and back to the boiler. DO NOT use direct connection if any heating loop exceeds this value.

For systems other than finned tube or cast iron baseboard — Use the CIRCULATOR HEAD AVAILABLE to determine whether the boiler circulator can provide the flow needed. (See Figure 52, page 45.)

For systems requiring higher flow or head loss — apply the suggested piping of Figure 53, page 46, NOT that of Figure 50.

Balancing, if required — Substitute a memory-stop valve for one of the isolation valves in each zone to use the memory-stop valve for balancing flow as well as isolation.

DHW tank as a zone — A DHW tank can be connected in the system as a zone if NOT direct-connecting the boiler to a DHW tank or Aqua Logic (CWH). If domestic priority is required, use a Weil-Mclain zone controller to operate zones and activate the boiler.

DHW refers to an indirect-fired domestic hot water storage tank. CWH refers to a Weil-McLain Aqua Logic Water Heater.

** NOTICE **

Aqua Logic (CWH) unit installations — refer to the Weil-McLain Aqua Logic (CWH) manual for piping and installation requirements.

** CAUTION **

Wire all zone valve end switches to the boiler’s ZONE 2 input. Provide isolation relays if using 3-wire zone valves.

** CAUTION **

By-pass pressure regulator — All zone valve systems shown in this manual RECOMMEND the installation of a by-pass pressure regulator (unless other provision is made). This is common practice for zone valve systems, but is mandatory for the WM97+ applications. This is because the WM97+ control can be set to continue running the circulator after the call for heat has ended (called post-pump). The by-pass pressure regulator prevents dead-heading the circulator if all zone valves are closed.
System piping (continued)

Figure 51 WM97+70/110 Zone valve zoning — direct connection (boiler primary/secondary by-pass valve CLOSED)

Figure 52 The system must meet the following requirements when applying Figure 51

<table>
<thead>
<tr>
<th>Boiler model</th>
<th>WM97+70</th>
<th>WM97+110</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN line size (inches) []</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BRANCH line size (inches) []</td>
<td>¼</td>
<td>¼</td>
</tr>
<tr>
<td>Total FLOW, GPM</td>
<td>6.3</td>
<td>9.9</td>
</tr>
<tr>
<td>Boiler internal circulator: TACO model</td>
<td>007-IFC</td>
<td>0015-MSF2-IFC</td>
</tr>
<tr>
<td>Circulator HEAD (feet) available to the system</td>
<td>5.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Finned-tube baseboard (½”) applications:

- Minimum NUMBER of circuits: 2 or 3
- Maximum FLOW per circuit, GPM (20°F temperature drop): 3.5 or 4.0
- Maximum LOAD per circuit, MBH: 35 or 40
- Maximum FEET of FINNED TUBE BASEBOARD per loop (@ 600 BTUH per foot): 58 or 67
- **L** — Maximum circuit length, feet (see L-1, L-2 and L-3 in Figure 51): 102 or 105

Legend — Figure 50, page 44 & Figure 51, page 45

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WM97+70 or 110 boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Indirect water heater, if used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DHW circulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Supplementary expansion tank, diaphragm type, if used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Air separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Flow/check valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Zone valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Primary/secondary by-pass valve — see page 40 for information — CLOSED: Boiler circulator provides system flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Make-up water supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>By-pass pressure regulator, RECOMMENDED for zone valve systems unless other provision is made</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Backflow preventer, if used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Pressure reducing valve, if used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Internal expansion tank, diaphragm-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Quick-fill valve, if used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Heating circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Additional heating circuits, if any</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Items supplied with boiler — all other items supplied by installer

NOTICE DHW refers to an indirect-fired domestic hot water storage tank. CWH refers to a Weil-McLain Aqua Logic Water Heater.
System piping (continued)

ZONE VALVE zoning — primary/secondary
Internal P/S by-pass valve OPEN
WM97+70 or 110 only

CAUTION The boiler primary/secondary by-pass valve **MUST be OPEN** to prevent excessive head caused by running the boiler circulator and system circulator in series.

See Figure 53.

1. This configuration is for WM97+70 or 110 zone valve systems that need more flow than the boiler's circulator can provide (see page 45 for information).
2. OPEN the boiler internal primary/secondary by-pass valve.
3. Install a system circulator (supplied by installer) as shown.
4. A benefit of primary/secondary piping is that it does not apply the head of the boiler circulator to the system zone valves.

Supplementary expansion tank, if used

1. Connect the supplementary expansion tank and make-up water piping as shown in Figure 47, page 42.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used

1. DHW or Aqua Logic (CWH) direct connection — Pipe from the boiler's bottom connections to water heater boiler connections as shown. See Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW as a zone — A DHW tank can be piped as a zone if a DHW tank or Aqua Logic (CWH) is **NOT** connected to the boiler. To provide DHW priority operation in this case, a Weil-McLain WMZV must be used.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
4. If **NOT** connecting a water heater, terminate the bottom connections as shown in the inset on Figure 53.

Controlling the zones

1. The WM97+ control can be set up to operate on space heating only or on space heating plus DHW or Aqua Logic (CWH). Refer to Field wiring, beginning on page 64, for instructions on wiring to zone valves.
2. The boiler and zone valves can also be operated by a Weil-McLain WMZV zone controller.

Legend — Figure 53

1	WM97+70 or 110 boiler
2	Indirect water heater, if used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)
3	Relief valve, supplied with boiler, field piped — **MUST be piped to boiler supply connection** — see page 13 for information
4	Relief valve piping to drain — see page 39
5	DHW circulator
6	Isolation valves
7	System circulator
8	Supplementary expansion tank, diaphragm type, if used
9	Air separator
10	Flow/check valves
11	Purge/drain valves (one drain valve is supplied loose with the boiler)
12	Boiler circulator, with integral flow/check valve, factory installed in boiler
13	Zone valves
14	Primary/secondary by-pass valve — see page 40 for information — **OPEN**: Boiler connected as primary/secondary
15	Make-up water supply
21	By-pass pressure regulator, RECOMMENDED for zone valve systems unless other provision is made
23	Backflow preventer, if used
25	Pressure reducing valve, if used
26	Internal expansion tank, diaphragm-type
27	Quick-fill valve, if used
28	DHW boiler water supply connection, when used — see page 13 for information
29	DHW boiler water return connection, when used — see page 13 for information
30	Pressure/temperature gauge, supplied with boiler, field piped
31	Heating circuits
32	Additional heating circuits, if any

Notice

Connect zone valve end switches to ZONE 2 input. Connect system circulator to CIRC 2 output.

CAUTION Use isolation relays if connected 3-wire zone valve end switches to the WM97+ control inputs.

DHW refers to an indirect-fired domestic hot water storage tank. CWH refers to a Weil-McLain Aqua Logic Water Heater.

Figure 53 WM97+70/110 Zone valve zoning — primary/secondary connection — a system circulator is required.
System piping (continued)

ZONE VALVE zoning — primary/secondary
Internal P/S by-pass valve OPEN
WM97+155 only

⚠️ CAUTION ⚠️ The boiler primary/secondary by-pass valve ⚠️MUST be OPEN⚠️ for single-boiler WM97+155 applications, with system connected as primary/secondary.

See Figure 54.
1. OPEN the boiler internal primary/secondary by-pass valve.
2. Install a system circulator (supplied by installer) as shown.
3. A benefit of primary/secondary piping is that it does not apply the head of the boiler circulator to the system zone valves.

Expansion tank required
1. Provide a system expansion tank following the guidelines on page 43.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used
1. DHW or Aqua Logic (CWH) direct connection — Pipe from boiler’s bottom connections to water heater boiler connections as shown. See Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW as a zone — A DHW tank can be connected as a zone if a DHW tank or Aqua Logic (CWH) is NOT connected to the boiler. To provide DHW priority operation in this case, a Weil-Mclain WMZV must be used.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
4. If NOT connecting a water heater, terminate the bottom connections as shown in the inset on Figure 54.

Controlling the zones
1. The WM97+ control can be set up to operate on space heating only or on space heating plus DHW or Aqua Logic (CWH). Refer to Field wiring, beginning on page 64, for instructions on wiring to zone valves.
2. The boiler and zone valves can also be operated by a Weil-McLain WMZV zone controller.

Legend — Figure 54

1. WM97+155 boiler
2. Indirect water heater, when used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)
3. Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information
4. Relief valve piping to drain — see page 39
5. DHW circulator
6. Isolation valves
7. System circulator
8. System expansion tank, diaphragm type, when used
9. Air separator
10. Flow/check valves
11. Purge/drain valves (one drain valve is supplied loose with the boiler)
12. Boiler circulator, with integral flow/check valve, factory installed in boiler
13. Zone valves
14. Primary/secondary bypass valve — see page 41 for information — OPEN: Boiler connected as primary/sec-
15. Make-up water supply
16. By-pass pressure regulator, RECOMMENDED for zone valve systems unless other provision is made
17. Backflow preventer, when used
18. Pressure reducing valve, when used
19. Quick-fill valve, when used
20. DHW boiler water supply connection, when used — see page 13 for information
21. DHW boiler water return connection, when used — see page 13 for information
22. Pressure/temperature gauge, supplied with boiler, field piped
23. Heating circuits
24. Additional heating circuits, if any

= Items supplied with boiler — all other items supplied by installer
System piping (continued)

CIRCULATOR zoning — primary/secondary
Internal P/S by-pass valve OPEN
WM97+70 or 110 only

CAUTION The boiler primary/secondary by-pass valve MUST be open to prevent excessive head caused by running the boiler circulator and zone circulators in series.

See Figure 55.
1. OPEN the boiler internal primary/secondary by-pass valve.
2. Install a separate circulator for each zone. The boiler circulator cannot be used for a zone. It must remain in the boiler, as installed at the factory.

Supplementary expansion tank, if used
1. If using a supplementary closed-type expansion tank, connect the expansion tank and make-up water piping as shown in Figure 47, page 42.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used —
1. DHW or Aqua Logic (CWH) direct connection — Pipe from the boiler’s bottom connections to water heater boiler connections as shown. See the Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW tank as a zone — A DHW tank can be piped as a zone (as in Figure 59, page 52) if a DHW tank or Aqua Logic (CWH) is NOT connected to the boiler. Wire the DHW circulator to boiler Zone 1. Set the boiler circulator to ON in the DHW Settings menu.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
4. If NOT connecting a water heater, terminate the bottom connections as shown in the inset on Figure 55.

Controlling the zones
1. The WM97+ control operates up to three zones (DHW or Aqua Logic (CWH) plus two space heating, or three space heating). Refer to Field wiring, beginning on page 64, for instructions on wiring to circulators.
2. For more than three zones, use a Weil-Mclain WMCR zone controller. See suggested wiring in this manual.

Legend — Figure 55

1	WM97+70 or 110 boiler
2	Indirect water heater, if used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)
3	Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information
4	Relief valve piping to drain — see page 39
5	DHW circulator
6	Isolation valves
7	Supplementary expansion tank, diaphragm type, if used
8	Air separator
9	Flow/check valves
10	Purge/drain valves (one drain valve is supplied loose with the boiler)
11	Boiler circulator, with integral flow/check valve, factory installed in boiler
12	Primary/secondary by-pass valve — see page 40 for information — OPEN: Boiler connected as primary/secondary
13	Make-up water supply
14	Backflow preventer, if used
15	Zone circulators
16	Pressure reducing valve, if used
17	Internal expansion tank, diaphragm-type
18	Quick-fill valve, if used
19	DHW boiler water supply connection, when used — see page 13 for information
20	DHW boiler water return connection, when used — see page 13 for information
21	Pressure/temperature gauge, supplied with boiler, field piped
22	Heating circuits
23	Additional heating circuits, if any

= Items supplied with boiler — all other items supplied by installer

DHW refers to an indirect-fired domestic hot water storage tank. CWH refers to a Weil-McLain Aqua Logic Water Heater.

Figure 55 WM97+70/110 Circulator zoning plus optional DHW piping
System piping (continued)

CIRCULATOR zoning — primary/secondary

Internal P/S by-pass valve OPEN

WM97+155 only

CAUTION The boiler primary/secondary by-pass valve MUST be open to prevent excessive head caused by running the boiler circulator and zone circulators in series.

See Figure 56.

1. **OPEN** the boiler internal primary/secondary by-pass valve.
2. Install a separate circulator for each zone. The boiler circulator *cannot* be used for a zone. It must remain in the boiler, as installed at the factory.

Expansion tank

1. Provide a system expansion tank following the guidelines on page 43.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used

1. **DHW** or Aqua Logic (CWH) direct connection — Pipe from the boiler’s bottom connections to water heater boiler connections as shown. See the Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. **DHW** tank as a zone — A **DHW** tank can be piped as a zone (as in Figure 60, page 53) if a **DHW** tank or Aqua Logic (CWH) is **NOT** connected to the boiler. Wire the **DHW** circulator to boiler Zone 1. Set the boiler circulator to ON in the **DHW** Settings menu.
3. **Priority option** — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The **MAX ON TIME** setting can be adjusted to limit how long this occurs. Set the **MAX ON TIME** to “0” to disable domestic priority.
4. If **NOT** connecting a water heater, terminate the bottom connections as shown in the inset on Figure 56.

Controlling the zones

1. The WM97+ control operates up to three zones (DHW or Aqua Logic (CWH) plus two space heating, or three space heating). Refer to Field wiring, beginning on page 64, for instructions on wiring to circulators.
2. For more than three zones, use a Weil-McLain WMCR zone controller. See suggested wiring in this manual.

Legend — Figure 56

1	WM97+155 boiler
2	Indirect water heater, when used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)
3	Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 39 for information
4	Relief valve piping to drain — see page 39
5	DHW circulator
6	Isolation valves
7	System expansion tank, diaphragm type, when used
8	Air separator
9	Flow/check valves
10	Purge/drain valves (one drain valve is supplied loose with the boiler)
11	Boiler circulator, with integral flow/check valve, factory installed in boiler
12	Primary/secondary by-pass valve — see page 41 for information — OPEN: Boiler connected as primary/secondary
13	Make-up water supply
20	Backflow preventer, when used
23	Zone circulators
24	Pressure reducing valve, when used
25	Quick-fill valve, when used
26	**DHW** boiler water supply connection, when used — see page 13 for information
27	**DHW** boiler water return connection, when used — see page 13 for information
29	**DHW** boiler water return connection, when used — see page 13 for information
30	Pressure/temperature gauge, supplied with boiler, field piped
31	Heating circuits
32	Additional heating circuits, if any

NOTICE DHW refers to an indirect-fired domestic hot water storage tank. CWH refers to a Weil-McLain Aqua Logic Water Heater.

Figure 56 WM97+155 Circulator zoning plus optional **DHW** piping
System piping (continued)

RADIANT HEATING — CIRCULATOR zoning

*Internal P/S by-pass valve OPEN
WM97+70 or 110 only*

See Figure 57.

1. The WM97+ boiler is ideal for use in radiant heating. The unique heat exchanger design allows it to work well even in condensing mode. There is no need to regulate boiler return water temperature in radiant heating applications.
2. Apply this configuration for typical radiant heating applications.
3. Size the system piping and circulators to provide the flow and pressure drop needed.

High limit in system piping

1. Add the recommended high limit control (Figure 57, item 22) to help ensure supply water temperature will not exceed the maximum allowable for the radiant system.
2. Wire the limit control to either the manual reset or automatic reset external limit circuit of the WM97+ control.

Supplementary expansion tank, if used

1. If using a supplementary closed-type expansion tank, connect the expansion tank and make-up water piping as shown in Figure 47, page 42.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used

1. DHW or Aqua Logic (CWH) direct connection — Pipe from the boiler's bottom connections to water heater boiler connections as shown. See the Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW tank as a zone — A DHW tank can be piped as a zone (as in Figure 59, page 52) if a DHW tank or Aqua Logic (CWH) is NOT connected to the boiler. Wire the DHW circulator to boiler Zone 1. Set the boiler circulator to ON in the DHW Settings menu.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to "0" to disable domestic priority.
4. If NOT connecting a water heater, terminate the bottom connections as shown in the inset on Figure 57.

Controlling the zones

1. The WM97+ control operates up to three zones (DHW or Aqua Logic (CWH) plus two space heating, or three space heating). Refer to Field wiring, beginning on page 64, for instructions on wiring to circulators.
2. For more than three zones, use a Weil-McLain WMCR zone controller. See suggested wiring in this manual.

Legend — Figure 57

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WM97+70 or 110 boiler</td>
</tr>
<tr>
<td>2</td>
<td>Indirect water heater, if used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)</td>
</tr>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
</tr>
<tr>
<td>5</td>
<td>DHW circulator</td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
</tr>
<tr>
<td>8</td>
<td>Supplementary expansion tank, diaphragm type, if used</td>
</tr>
<tr>
<td>9</td>
<td>Air separator</td>
</tr>
<tr>
<td>10</td>
<td>Flow/check valves</td>
</tr>
<tr>
<td>11</td>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
</tr>
<tr>
<td>12</td>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
</tr>
<tr>
<td>14</td>
<td>Primary/secondary bypass valve — see page 40 for information — OPEN: Boiler connected as primary/secondary</td>
</tr>
<tr>
<td>20</td>
<td>Make-up water supply</td>
</tr>
<tr>
<td>22</td>
<td>High limit temperature control</td>
</tr>
<tr>
<td>23</td>
<td>Backflow preventer, if used</td>
</tr>
<tr>
<td>24</td>
<td>Zone circulators</td>
</tr>
<tr>
<td>25</td>
<td>Pressure reducing valve, if used</td>
</tr>
<tr>
<td>26</td>
<td>Internal expansion tank, diaphragm-type</td>
</tr>
<tr>
<td>27</td>
<td>Quick-fill valve, if used</td>
</tr>
<tr>
<td>28</td>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>29</td>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>30</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
</tr>
<tr>
<td>31</td>
<td>Heating circuits</td>
</tr>
<tr>
<td>32</td>
<td>Additional heating circuits, if any</td>
</tr>
</tbody>
</table>

- = Items supplied with boiler — all other items supplied by installer

DHW refers to an indirect-fired domestic hot water storage tank. CWH refers to a Weil-McLain Aqua Logic Water Heater.
System piping (continued)

RADIANT HEATING — CIRCULATOR zoning
Internal P/S by-pass valve OPEN
WM97+155 only

See Figure 58.
1. The WM97+ boiler is ideal for use in radiant heating. The unique heat exchanger design allows it to work well even in condensing mode. There is no need to regulate boiler return water temperature in radiant heating applications.
2. Apply this configuration for typical radiant heating applications.
3. Size the system piping and circulators to provide the flow and pressure drop needed.

High limit in system piping
1. Add the recommended high limit control (Figure 58, item 22) to help ensure supply water temperature will not exceed the maximum allowable for the radiant system.
2. Wire the limit control to either the manual reset or automatic reset external limit circuit of the WM97+ control.

Expansion tank
1. Provide a system expansion tank following the guidelines on page 43.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used
1. DHW or Aqua Logic (CWH) direct connection — Pipe from the boiler’s bottom connections to water heater boiler connections as shown. See the Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW tank as a zone — A DHW tank can be piped as a zone (as in Figure 60, page 53) if a DHW tank or Aqua Logic (CWH) is NOT connected to the boiler. Wire the DHW circulator to boiler Zone 1. Set the boiler circulator to ON in the DHW Settings menu.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
4. If NOT connecting a water heater, terminate the bottom connections as shown in the inset on Figure 58.

Controlling the zones
1. The WM97+ control operates up to three zones (DHW or Aqua Logic (CWH) plus two space heating, or three space heating). Refer to Field wiring, beginning on page 64, for instructions on wiring to circulators.
2. For more than three zones, use a Weil-McLain WMCR zone controller. See suggested wiring in this manual.

Legend — Figure 58

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WM97+155 boiler</td>
</tr>
<tr>
<td>2</td>
<td>Indirect water heater, when used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)</td>
</tr>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
</tr>
<tr>
<td>5</td>
<td>DHW circulator</td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
</tr>
<tr>
<td>7</td>
<td>System expansion tank, diaphragm type, when used</td>
</tr>
<tr>
<td>8</td>
<td>Air separator</td>
</tr>
<tr>
<td>9</td>
<td>Flow/check valves</td>
</tr>
<tr>
<td>10</td>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
</tr>
<tr>
<td>11</td>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
</tr>
<tr>
<td>12</td>
<td>Primary/secondary bypass valve — see page 41 for information — OPEN: Boiler connected as primary/secondary</td>
</tr>
<tr>
<td>13</td>
<td>Make-up water supply</td>
</tr>
<tr>
<td>14</td>
<td>High limit temperature control</td>
</tr>
<tr>
<td>15</td>
<td>Backflow preventer, when used</td>
</tr>
<tr>
<td>16</td>
<td>Zone circulators</td>
</tr>
<tr>
<td>17</td>
<td>Pressure reducing valve, when used</td>
</tr>
<tr>
<td>18</td>
<td>Quick-fill valve, when used</td>
</tr>
<tr>
<td>19</td>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>20</td>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>21</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
</tr>
<tr>
<td>22</td>
<td>Heating circuits</td>
</tr>
<tr>
<td>23</td>
<td>Additional heating circuits, if any</td>
</tr>
</tbody>
</table>

■ = Items supplied with boiler — all other items supplied by installer
System piping (continued)

DHW as a zone — CIRCULATOR zoning
Internal P/S by-pass valve OPEN
WM97+70 or 110 only

CAUTION DO NOT use this piping if the boiler is connected to a Aqua Logic (CWH) unit. The Aqua Logic (CWH) unit requires priority and would prevent priority operation of the system DHW unit.

CAUTION The boiler internal primary/secondary by-pass valve MUST be open to prevent excessive head caused by running the boiler circulator and zone circulators in series.

See Figure 59.

1. **OPEN** the boiler internal primary/secondary by-pass valve.
2. Install a separate circulator for each zone. The boiler circulator **cannot** be used for a zone. It must remain in the boiler, as installed at the factory.
3. Install the DHW tank as a system zone. The DHW tank can be piped as a zone **ONLY** if a DHW tank or Aqua Logic (CWH) is **NOT** connected to the boiler.
4. Wire the DHW circulator to boiler Zone 1. Set the boiler circulator to ON in the DHW Settings menu.
5. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
6. Terminate the bottom connections as shown in the inset on Figure 59.

Supplementary expansion tank, if used

1. If using a supplementary closed-type expansion tank, connect the expansion tank and make-up water piping as shown in Figure 47, page 42.
2. **DO NOT** use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

Controlling the zones

1. The WM97+ control operates up to three zones (DHW plus two space heating). Refer to Field wiring, beginning on page 64, for instructions on wiring to circulators.
2. For more than three zones, use a Weil-McLain WMCR zone controller. See suggested wiring in this manual.

Legend — Figure 59

- WM97+70 or 110 boiler
- Indirect water heater, if used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)
- Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information
- Relief valve piping to drain — see page 39
- Isolation valves
- Supplementary expansion tank, diaphragm type, if used
- Air separator
- Flow/check valves
- Purge/drain valves (one drain valve is supplied loose with the boiler)
- Boiler circulator, with integral flow/check valve, factory installed in boiler
- Primary/secondary by-pass valve — see page 40 for information — OPEN: Boiler connected as primary/secondary
- Make-up water supply
- Backflow preventer, if used
- Zone circulators
- Pressure reducing valve, if used
- Internal expansion tank, diaphragm-type
- Quick-fill valve, if used
- DHW boiler water supply connection, when used — see page 13 for information
- DHW boiler water return connection, when used — see page 13 for information
- Pressure/temperature gauge, supplied with boiler, field piped
- Heating circuits
- Additional heating circuits, if any

- Items supplied with boiler — all other items supplied by installer
System piping (continued)

DHW as a zone — CIRCULATOR zoning
Internal P/S by-pass valve OPEN
WM97+155 only

⚠️ CAUTION ⚠️ DO NOT use this piping if the boiler is connected to a Aqua Logic (CWH) unit. The Aqua Logic (CWH) unit requires priority and would prevent priority operation of the system DHW unit.

⚠️ CAUTION ⚠️ The boiler internal primary/secondary by-pass valve MUST be open to prevent excessive head caused by running the boiler circulator and zone circulators in series.

See Figure 60.

1. **OPEN** the boiler internal primary/secondary by-pass valve.
2. Install a separate circulator for each zone. The boiler circulator **cannot** be used for a zone. It must remain in the boiler, as installed at the factory.
3. Install the DHW tank as a system zone. The DHW tank can be piped as a zone **ONLY** if a DHW tank or Aqua Logic (CWH) is **NOT** connected to the boiler.
4. Wire the DHW circulator to boiler Zone 1. Set the boiler circulator to ON in the DHW Settings menu.
5. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
6. Terminate the bottom connections as shown in the inset on Figure 60

Expansion tank

1. Provide a system expansion tank following the guidelines on page 43.
2. **DO NOT** use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

Controlling the zones

1. The WM97+ control operates up to three zones (DHW plus two space heating). Refer to Field wiring, beginning on page 64, for instructions on wiring to circulators.
2. For more than three zones, use a Weil-McLain WMCR zone controller. See suggested wiring in this manual.

Legend — Figure 60

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WM97+155 boiler</td>
</tr>
<tr>
<td>2</td>
<td>Indirect water heater, when used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)</td>
</tr>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
</tr>
<tr>
<td>5</td>
<td>DHW circulator</td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
</tr>
<tr>
<td>8</td>
<td>System expansion tank, diaphragm type, when used</td>
</tr>
<tr>
<td>9</td>
<td>Air separator</td>
</tr>
<tr>
<td>10</td>
<td>Flow/check valves</td>
</tr>
<tr>
<td>11</td>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
</tr>
<tr>
<td>12</td>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
</tr>
<tr>
<td>14</td>
<td>Primary/secondary by-pass valve — see page 41 for information — OPEN: Boiler connected as primary/secondary</td>
</tr>
<tr>
<td>20</td>
<td>Make-up water supply</td>
</tr>
<tr>
<td>23</td>
<td>Backflow preventer, when used</td>
</tr>
<tr>
<td>24</td>
<td>Zone circulators</td>
</tr>
<tr>
<td>25</td>
<td>Pressure reducing valve, when used</td>
</tr>
<tr>
<td>27</td>
<td>Quick-fill valve, when used</td>
</tr>
<tr>
<td>28</td>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>29</td>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>30</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
</tr>
<tr>
<td>31</td>
<td>Heating circuits</td>
</tr>
<tr>
<td>32</td>
<td>Additional heating circuits, if any</td>
</tr>
</tbody>
</table>

= Items supplied with boiler — all other items supplied by installer
System piping (continued)

WATER CHILLER systems — ZONE VALVES
Internal P/S by-pass valve OPEN
WM97+70 or 110 only

See Figure 61
1. OPEN the boiler internal primary/secondary by-pass valve.
2. The chiller must be piped in parallel with the boiler.
3. Use appropriate valves to prevent chilled medium from entering boiler.
4. Circulator zoning option — The space heating system can be zoned with circulators if a separate circulator is supplied for the chilled water loop. Install a separate circulator for each zone. The boiler circulator cannot be used for a zone. It must remain in the boiler, as installed at the factory.

Notice
If antifreeze is used in the system, consider the effects of antifreeze on circulator sizing and DHW performance. Some local codes may require double-wall DHW heat exchanger design. Use only the antifreeze listed by Weil-McLain for use with this boiler. See page 88 for details.

Warning
Chilled medium, if used, is piped in parallel with heating boiler as shown in Figure 61. Use appropriate valves to prevent chilled medium from entering boiler. If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle.

Expansion tank
1. Provide a system expansion tank following the guidelines on page 43.
2. DO NOT use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used —
1. DHW or Aqua Logic (CWH) direct connection — Pipe from the boiler’s bottom connections to water heater boiler connections as shown. See the Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW tank as a zone — A DHW tank can be piped as a zone (as in Figure 59, page 52) if a DHW tank or Aqua Logic (CWH) is NOT connected to the boiler. To provide DHW priority operation in this case, a Weil-McLain WMZV must be used.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
4. If NOT connecting a water heater, terminate the bottom connections as shown in the inset on Figure 61.

Controlling the zones
1. The WM97+ control can be set up to operate on space heating only or on space heating plus DHW or Aqua Logic (CWH). Refer to Field wiring, beginning on page 94, for instructions on wiring to zone valves.
2. The boiler and zone valves can also be operated by a Weil-McLain WMZV zone controller.

Legend — Figure 61

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WM97+70 or 110 boiler</td>
</tr>
<tr>
<td>2</td>
<td>Indirect water heater, if used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)</td>
</tr>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
</tr>
<tr>
<td>5</td>
<td>DHW circulator</td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
</tr>
<tr>
<td>7</td>
<td>System circulator</td>
</tr>
<tr>
<td>9</td>
<td>Air separator</td>
</tr>
<tr>
<td>10</td>
<td>Flow/check valves</td>
</tr>
<tr>
<td>11</td>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
</tr>
<tr>
<td>12</td>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
</tr>
<tr>
<td>13</td>
<td>Zone valves</td>
</tr>
<tr>
<td>14</td>
<td>Primary/secondary by-pass valve — see page 40 for information — OPEN: Boiler connected as primary/secondary</td>
</tr>
<tr>
<td>15</td>
<td>Supplementary expansion tank, closed type, REQUIRED for chiller systems (some chiller systems may use a diaphragm type expansion tank)</td>
</tr>
<tr>
<td>16</td>
<td>Water chiller</td>
</tr>
<tr>
<td>17</td>
<td>Check valve</td>
</tr>
<tr>
<td>18</td>
<td>Y-strainer</td>
</tr>
<tr>
<td>19</td>
<td>Balancing valve</td>
</tr>
<tr>
<td>20</td>
<td>Make-up water supply</td>
</tr>
<tr>
<td>21</td>
<td>By-pass pressure regulator, RECOMMENDED for zone valve systems unless other provision is made</td>
</tr>
<tr>
<td>22</td>
<td>Backflow preventer, if used</td>
</tr>
<tr>
<td>23</td>
<td>Pressure reducing valve, if used</td>
</tr>
<tr>
<td>24</td>
<td>Internal expansion tank, diaphragm-type</td>
</tr>
<tr>
<td>25</td>
<td>Quick-fill, if used</td>
</tr>
<tr>
<td>26</td>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>27</td>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
</tr>
<tr>
<td>28</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
</tr>
<tr>
<td>29</td>
<td>Heating circuits</td>
</tr>
<tr>
<td>30</td>
<td>Additional heating circuits, if any</td>
</tr>
</tbody>
</table>

= Items supplied with boiler — all other items supplied by installer
System piping (continued)

WATER CHILLER systems — ZONE VALVES
Internal P/S by-pass valve OPEN
WM97+155 only

See Figure 62
1. **OPEN** the boiler internal primary/secondary by-pass valve.
2. The chiller must be piped in parallel with the boiler.
3. Use appropriate valves to prevent chilled medium from entering boiler.
4. Circulator zoning option — The space heating system can be zoned with circulators if a separate circulator is supplied for the chilled water loop. Install a separate circulator for each zone. The boiler circulator **cannot** be used for a zone. It must remain in the boiler, as installed at the factory.

NOTICE
If antifreeze is used in the system, consider the effects of antifreeze on circulator sizing and DHW performance. Some local codes may require double-wall DHW heat exchanger design. Use only the antifreeze listed by Weil-McLain for use with this boiler. See page 88 for details.

Chilled medium, if used, is piped in parallel with heating boiler as shown in Figure 61. Use appropriate valves to prevent chilled medium from entering boiler. If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle.

Expansion tank
1. Provide a system expansion tank following the guidelines on page 43.
2. Do **NOT** use a closed-type tank if connecting to a water heater that is equipped with an automatic air vent.

DHW or Aqua Logic (CWH), if used
1. DHW or Aqua Logic (CWH) direct connection — Pipe from the boiler’s bottom connections to water heater boiler connections as shown. See the Aqua Logic (CWH) manual for Aqua Logic (CWH) piping instructions.
2. DHW tank as a zone — A DHW tank can be piped as a zone (as in Figure 60, page 53) if a DHW tank or Aqua Logic (CWH) is **NOT** connected to the boiler. To provide DHW priority operation in this case, a Weil-McLain WMZV must be used.
3. Priority option — By default, the WM97+ control turns off space heating to its Zone 2 and Zone 3 outputs during domestic water heating on Zone 1. The MAX ON TIME setting can be adjusted to limit how long this occurs. Set the MAX ON TIME to “0” to disable domestic priority.
4. If **NOT** connecting a water heater, terminate the bottom connections as shown in the inset on Figure 62.

CONTROLLING THE ZONES
1. The WM97+ control can be set up to operate on space heating only or on space heating plus DHW or Aqua Logic (CWH). Refer to Field wiring, beginning on page 64, for instructions on wiring to zone valves.
2. The boiler and zone valves can also be operated by a Weil-McLain WMZV zone controller.

Legend — Figure 62

1	WM97+155 boiler
2	Indirect water heater, when used (for Aqua Logic (CWH) installations, refer to the Weil-McLain Aqua Logic (CWH) manual)
3	Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information
4	Relief valve piping to drain — see page 39
5	DHW circulator
6	Isolation valves
7	System circulator
8	Air separator
9	Flow/check valves
10	Purge/drain valves (one drain valve is supplied loose with the boiler)
11	Boiler circulator, with integral flow/check valve, factory installed in boiler
12	Zone valves
13	Primary/secondary bypass valve — see page 41 for information — OPEN: Boiler connected as primary/secondary
14	System expansion tank, closed type, when used (some chiller systems may use a diaphragm type expansion tank)
15	Water chiller
16	Check valve
17	Y-strainer
18	Balancing valve
19	Make-up water supply
20	By-pass pressure regulator, RECOMMENDED for zone valve systems unless other provision is made
21	Backflow preventer, when used
22	Pressure reducing valve, when used
23	Quick-fill valve, when used
24	DHW boiler water supply connection, when used — see page 13 for information
25	DHW boiler water return connection, when used — see page 13 for information
26	Pressure/temperature gauge, supplied with boiler, field piped
27	Heating circuits
28	Additional heating circuits, if any

CAUTION: Use isolation relays if connected 3-wire zone valve end switches to the WM97+ control inputs.

NOTICE: Connect zone valve end switches to ZONE 2 input. Connect system circulator to CIRC 2 output.
Multiple boiler installations

Placing multiple boilers

1. Locate multiple boilers with spacings shown in Figure 63.
2. Provide indicated clearances around boilers for access and servicing. If recommended dimensions are not possible, provide at least the minimum clearances given on page 9. Also follow local codes.
3. The recommended clearance of 41½ inches below the boiler ensures room for further addition of a Aqua Logic (CWH) unit if desired.
4. Provide a minimum 30-inch walkway in front of the boilers to ensure accessibility.
5. Uncrate, assemble and mount boilers according to instructions in this manual.
6. Provide clearance for installation of venting, air piping, gas piping, expansion tank, primary circulator and other accessories.

Manifolded combustion air option

1. Multiple WM97+ boilers can use a common combustion air manifold.
 a. Provide minimum clearance to adjacent vents and grade/snow line as shown in Figure 64.
 b. Provide minimum free area in duct (adjusted for louver restriction) of 1 square inch per 2,000 Btu per hour boiler input (or see Figure 138, page 134).
 c. If combustion air damper is used, wire to boilers to prevent operation except after damper has opened.

 WARNING
 ONLY air piping can be combined. DO NOT use combined vent piping. Flue gas leakage and boiler component damage can occur. Failure to comply could result in severe personal injury, death or substantial property damage.

 WARNING
 DO NOT use common venting — the manifold option is only for combustion air — all vent pipes must be routed and terminated individually as described in this manual.

See Figure 138, page 134 for minimum cross sectional area of combined air ducts.

 — OR —

 WARNING
 Calculate required cross section (for area in square inches):

 MIN. AREA = TOTAL MBH INPUT DIVIDED BY 2

 Example: A multiple boiler system with (6) WM97+155 boilers has a total input of 6 x 155 = 930 MBH (930,000 Btu/h). The required duct cross sectional area is:

 MIN. AREA = 930 DIVIDED BY 2 = 465 sq. inches
Multiple boiler installations (continued)

Sequencing multiple WM97+ boilers

1. Use a multiple-boiler controller, such as the Weil-McLain BCP, BMC or BSC, to sequence boilers. Locate temperature sensors as required in the controller manual.

Easy-Fit® piping installation

1. Main header and Easy-Fit® Manifold pipe sizing.
 a. Size system piping as required for the flow.
 b. Install tees or crosses in the system piping for Easy-Fit® manifolds as shown in Figure 65 or Figure 66. Size manifolds to handle total connected boiler output as shown.
2. Provide connections in main header for Easy-Fit® manifolds as close as possible to the midpoint of multiple boilers.
 a. Use tees for four or less boilers, as in Figure 65.
 b. Use either tees (Figure 65) or crosses (Figure 66) for five or more boilers.
3. Manifold placement:
 a. To alternate spacing for supply and return lines to boilers, reverse the short-end and long-end of the manifolds as shown in Figure 65 and Figure 66.
 b. Return manifold must be on the return side of the main and supply manifold must be on the supply side of the main. Drawings in this manual show flow in system main from right to left. For system flowing left to right, reverse the locations of the manifolds accordingly.
4. Connect from Easy-Fit® manifold branches to boiler supply and return connections using copper or steel pipe, sized for the required flow rate.
5. Install an isolation valve on the supply and return of each boiler as shown in the piping diagrams in this manual. Some local codes may require the use of individual water level controls and limits on each boiler because isolation valves are installed.
6. Install main system air eliminator and primary circulator in supply piping as shown in piping diagrams. Place expansion tank on suction side of system circulator as shown.
7. Install system accessories as shown in drawings.
8. Piping recommendation drawings:
 a. Figure 65 and Figure 66 show details of Easy-Fit® manifolds.
 b. Figure 67, page 58 is a schematic piping drawing showing the locations of typical boiler piping and system piping, including limits and other devices often required by local codes.
 c. Figure 68, page 59 and Figure 69, page 60 are three-dimensional piping drawings of typical multiple boiler installation.
 d. Figure 70, page 61 shows recommended piping when an isolating heat exchanger is needed.
9. If desired, other primary/secondary piping arrangements can be used.

NOTICE The boiler internal primary/secondary by-pass valve must be CLOSED for multiple boiler installations piped as shown in this manual. This allows the boiler internal circulator to circulator water to and from the manifolds.

Maximum connected load per manifold:
2-inch manifold — 450 MBH
3-inch manifold — 1400 MBH
4-inch manifold — 2900 MBH
Multiple boiler installations (continued)

Figure 67 Piping schematic — typical piping for multiple WM97+ boilers, using Weil-McLain Easy-Fit manifolds (shown using WM97+155 boilers — adjust boiler connections as required for other boiler models)

Legend — Figure 67

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flow/check valve (integral to each boiler internal circulator)</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Isolation valves (when used)</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Cap</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Easy-Fit® Manifold (supply) — layout and size per page 57</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Easy-Fit® Manifold (return) — layout and size per page 57</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Primary circulator</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Expansion tank (diaphragm type)</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>System air eliminater</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>System automatic air vent</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Pressure reducing valve</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Check valve or backflow preventer, as required by applicable codes</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE The boiler internal primary/secondary by-pass valve must be CLOSED for multiple boiler installations piped as shown in this manual. This allows the boiler internal circulator to circulator water to and from the manifolds.
Multiple boiler installations (continued)

Figure 68 Piping layout — typical piping for multiple WM97+ boilers, using Weil-McLain Easy-Fit manifolds (2-boiler system) (shown using WM97+155 boilers — adjust boiler connections as required for other boiler models).

Legend — Figure 68

1. Flow/check valve (integral to each boiler internal circulator)
2. Isolation valves (when used)
3. Caps
4. Easy-Fit® Manifold (supply) — layout and size per page 57
5. Easy-Fit® Manifold (return) — layout and size per page 57
6. Primary circulator
7. Expansion tank (diaphragm type)
8. System air eliminator
9. System automatic air vent
10. Cold water supply
11. Boiler circulator — circulates water between boiler and Easy-Fit® Manifolds
12. Indirect-fired storage water heaters (Weil-McLain PLUS Line shown) — Example is shown connected to one boiler of the system. Preferably, use the last boiler in the lead/lag sequence and set its Priority to DHW Direct so it will switch to DHW firing and turn off its boiler circulator on a call for domestic water heating.
13. Water to condensate heat exchanger
14. Water to water heat exchanger
15. Condensate return
16. Vacuum breaker
17. Strainer
18. System supply
19. System return
20. Boiler relief valve and discharge piping, installed per WM97+ Boiler Manual
21. Indirect-fired storage water heaters (Weil-McLain PLUS Line shown) — Example is shown connected to one boiler of the system. Preferably, use the last boiler in the lead/lag sequence and set its Priority to DHW Direct so it will switch to DHW firing and turn off its boiler circulator on a call for domestic water heating.
22. DHW boiler water supply, typical
23. DHW boiler water return, typical
24. DHW boiler-side circulator and flow/check valve
25. Alternate DHW method — use Weil-McLain WM97+ with Aqua Logic (CWH)
Multiple boiler installations (continued)

Figure 69 Piping layout — typical piping for multiple WM97+ boilers, with DHW storage heaters (4-boiler system) (shown using WM97+155 boilers — adjust boiler connections as required for other boiler models)

<table>
<thead>
<tr>
<th>Suggested DHW boiler-side pipe sizing (for max. 0.04 feet head loss per foot of total equivalent length, TEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1 – 3.9 gpm</td>
</tr>
<tr>
<td>3.9 – 7.1 gpm</td>
</tr>
<tr>
<td>7.1 – 16 gpm</td>
</tr>
<tr>
<td>16 – 24 gpm</td>
</tr>
</tbody>
</table>

Legend — Figure 69

1. Flow/check valve (integral to each boiler internal circulator)
2. Isolation valves (when used)
3. Caps
4. Easy-Fit® Manifold (supply) — layout and size per page 57
5. Easy-Fit® Manifold (return) — layout and size per page 57
6. Primary circulator
7. Expansion tank (diaphragm type)
8. System air eliminator
9. System automatic air vent
10. Cold water supply
11. Boiler circulator — circulates water between boiler and Easy-Fit® Manifolds
12. System supply
13. System return
15. Flow/check valve
16. DHW boiler water supply, typical
17. DHW boiler water return, typical
18. DHW boiler-side circulators
19. DHW boiler-side supply Easy-Fit® Manifold
20. DHW boiler-side return Easy-Fit® Manifold
21. Flow/check valves (to prevent induced or gravity flow in heating system or DHW piping)
22. Check valve to prevent heat migration in heating system
23. See water heater manual for DHW piping — The DHW piping must also be manifolded together since the boiler-side piping is manifolded. If DHW heaters supply separate DHW circuits, provide an individual circulator for each water heater, and control each circulator by its water heater’s aquastat.
24. Drain valves for DHW boiler water piping

NOTICE

- The boiler internal primary/secondary by-pass valve must be CLOSED for multiple boiler installations piped as shown in this manual. This allows the boiler internal circulator to circulate water to and from the manifolds.
- This piping is suggested only. The layout above should be controlled with a boiler sequencing panel that provides DHW operation as well. Wire the heating system circulator to operate only on call for heat. Alternatively, use the boiler sequencing panel to provide domestic priority by disabling the heating system circulator any time there is a DHW call for heat. The boiler circulators, item 17, must operate on any call for heat, whether heating system or DHW. Offset the DHW boiler-side supply and return manifolds as shown so the total run of pipe and fittings to each of the water heaters is approximately equal.
Multiple boiler installations (continued)

Figure 70 Piping layout — typical piping for multiple WM97+ boilers, using isolation exchanger (shown using WM97+155 boilers — adjust boiler connections as required for other boiler models)

NOTICE

The illustration shows a shell and tube exchanger. Other exchanger types may be used if suitable for the system water conditions.

<table>
<thead>
<tr>
<th>Legend — Figure 70</th>
<th>Notice</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 Flow/check valve (integral to each boiler internal circulator) | The boiler internal primary/secondary by-pass valve must be CLOSED for multiple boiler installations piped as shown in this manual. This allows the boiler internal circulator to circulator water to and from the manifolds. | 1. Contact heat exchanger manufacturer for heat exchanger shell-side and tube-side piping and circulator requirements. Tube-side flow and temperatures must meet heating system requirements.
2. Contact heat exchanger manufacturer for sizing heat exchanger.
3. Heat exchanger shell-side circuit requires its own expansion tank as shown.
4. Heating system circuit requires its own expansion tank, as shown, plus its own relief valve set to protect heating system and heat exchanger piping and components.
5. When individual isolation valves are used, individual boiler and level controls may be required. |
| 2 Isolation valves (when used) | | |
| 3 Cap | | |
| 4 Easy-Fit® Manifold (supply) — layout and size per page 57 | | |
| 5 Easy-Fit® Manifold (return) — layout and size per page 57 | | |
| 6a Heating system circulator (exchanger tube-side) | | |
| 6b Heat exchanger shell-side circulator | | |
| 7 Expansion tanks (diaphragm type) | | |
Install condensate line

Prepare condensate trap assembly
1. Remove the condensate trap kit from the accessories bag.
2. See Figure 71. The left image shows the complete condensate trap kit.
3. Remove the flexible drain tube nut, item 2.
4. Push the flexible tube gasket ring onto the end of the flexible tube (item 1) as shown in Figure 71. The tube should extend through the gasket (item 3) about ¼ inch.
5. Insert the flexible tube and gasket into the drain fitting. When in position, the offset edge of the gasket ring will rest on the shoulder of the drain fitting as shown in Figure 71, detail 6.
6. Secure the flexible tube in place by screwing on the nut, item 2. Finger tighten securely.

Install the condensate trap assembly
1. Insert the condensate trap ball, Figure 71, item 5 into the trap body (item 4).

WARNING The condensate trap ball MUST be in place in the condensate trap assembly to prevent possible flue gas leakage through the condensate drain system.
2. Loosen the top nut on the trap body.
3. Slide the trap assembly onto the boiler condensate outlet. Firmly hand tighten the upper nut to secure the condensate trap in place.

Condensate drain system
1. Install condensate drain by connecting tubing or PVC pipe to the flexible drain line. Run the drain tubing or piping to a floor drain or condensate pump. The flexible drain line will fit in a ¾” PVC coupling. Run minimum ½” PVC for the piping to drain or condensate pump.

NOTICE Use materials approved by the authority having jurisdiction. In the absence of other authority, PVC and CPVC pipe must comply with ASTM D1785, F441 or D2665. Cement and primer must comply with ASTM D2564 or F493. For Canada, use CSA or ULC certified PVC or CPVC pipe, fittings and cement.
2. Select a condensate pump (if used) that is approved for use with condensing boilers and furnaces. The pump should have an overflow switch to prevent property damage from condensate spillage. The pump should have a minimum capacity of 2 GPH for the WM97+70, 3 GPH for the WM97+110, or 4 GPH for the WM97+155.
3. When sizing condensate pumps, make sure to include the total load of all appliances connected to it.

⚠️ CAUTION The condensate line must remain unobstructed, allowing free flow of condensate. If condensate is allowed to freeze in the line or if the line is obstructed in any other manor, condensate can exit from the boiler tee, resulting in potential water damage to property.

NOTICE Condensate from the WM97+ boiler will be slightly acidic (typically with a pH from 3.2 to 4.5). Install a neutralizing filter when draining into metal pipe and if required by local codes. See Replacement parts section at the end of this manual for the Weil-McLain kit.
Gas piping

WARNING WM97+ boilers are shipped ready to fire natural gas ONLY. You must install the propane orifice bushing if the boiler will be connected to propane. See page 14. Failure to comply could result in severe personal injury, death or substantial property damage.

WARNING Use two wrenches when tightening gas piping at boiler, using one wrench to prevent the boiler gas line connection from turning. Failure to support the boiler gas connection pipe to prevent it from turning could damage gas line components.

Connecting gas supply piping

1. Remove jacket front panel and refer to Figure 73 to pipe gas to boiler.
 a. Place a pipe wrench on the gas line inside the jacket when tightening the gas line assembly to the boiler gas connection (item 1).
 b. Install steel pipe fittings and factory-supplied gas cock as shown in Figure 73. All pipe fittings are supplied by the installer. The gas cock is shipped loose with the boiler.
 c. In Canada — The gas shut-off valve (item 2) must be identified by the installer.

2. Use pipe dope compatible with propane gases. Apply sparingly only to male threads of pipe joints so that pipe dope does not block gas flow.

WARNING Failure to apply pipe dope as detailed above can result in severe personal injury, death or substantial property damage.

3. Connect gas supply piping to the ½” NPT gas cock (item 2).
4. Support gas piping with hangers, not by boiler or its accessories.
5. Purge all air from gas supply piping.
 a. **During any pressure testing at less than 13” (330 mm) w.c.,** close the gas shutoff valve and disconnect system gas piping. At higher test pressures, disconnect boiler and gas valve from gas supply piping.
 b. Do not check for gas leaks with an open flame — use bubble test. Failure to use bubble test or check for gas leaks can cause severe personal injury, death or substantial property damage.
 c. **DO NOT adjust or attempt to measure gas valve outlet pressure. The gas valve is factory-set for the correct outlet pressure. This setting is suitable for natural gas and propane. Attempting to alter or measure the gas valve outlet pressure could result in damage to the valve, causing potential severe personal injury, death or substantial property damage.**

Gas pipe sizing

1. See page 18 for gas line sizing information.

Check gas pressure at inlet to boiler

1. See Figure 100, page 92 (WM97+70/110) or Figure 102, page 93 (WM97+155) for location of the gas inlet pressure test port.

2. For natural gas or propane, the pressure required at gas valve inlet pressure port (verify minimum gas pressure when all gas appliances are in operation):
 a. **Maximum:** 13” (330 mm) w.c. with no flow (lockup) or with boiler on.
 b. **Minimum gas pressure, with gas flowing (verify during boiler startup, while boiler is at high fire)** — WM97+70: 3½” (89 mm) w.c.; WM97+110: 4½” (114 mm) w.c.; WM97+155: 3½” (89 mm) w.c.

3. Install 100% lockup gas pressure regulator in supply line if inlet pressure can exceed 13” (330 mm) w.c. at any time. Adjust lockup regulator for 13” (330 mm) w.c. maximum.
Field wiring

WARNING ELECTRICAL SHOCK HAZARD — For your safety, turn off electrical power supply at service entrance panel before making any electrical connections to avoid possible electric shock hazard. Failure to do so can cause severe personal injury or death.

The installation must comply with:
National Electrical Code and any other national, state, provincial or local codes or regulations. In Canada, CSA C22.1 Canadian Electrical Code Part 1, and any local codes.

NOTICE Wiring must be N.E.C. Class 1. If original wiring as supplied with boiler must be replaced, use only type 105 °C wire or equivalent. Boiler must be electrically grounded as required by National Electrical Code ANSI/NFPA 70 – latest edition.

Figure 74 Field wiring overview (see Figure 77, page 67 and Figure 78, page 68 for detailed schematic and ladder wiring diagrams) (top view shown at bottom right is of WM97+70/100 — electrical entrances for WM97+155 are the same)

Line voltage wiring terminals
See Figure 75, page 65 for wiring instructions.
The terminals include the 120-VAC power input and three 120-VAC outputs (for circulators or other system devices).

Low voltage wiring terminals
See Figure 76, page 66 for wiring instructions.
The terminals include three thermostat/end switch inputs (zones 1, 2 and 3), 24-VAC power for thermostats (if needed), external limit inputs, alarm contact and outdoor sensor — see page 133.

WM97+ wiring

Terminals
All field wiring is made to the two electrical connection panels on top of the boiler. Line voltage, 120 VAC, terminals are on the left. Low voltage, 24 VAC, terminals are on the right.

Wire entrances
Wire entrance knockouts are in the top center of the electrical enclosure.

WARNING As shown in the warning at right, DO NOT use sharp objects to punch out the wiring knockouts. Wires routed under these knockouts could be damaged. Use ONLY a ball peen hammer to punch out the knockouts.

WM97+ control setup
WM97+ control setup depends on system design and control intent. See instructions on the following pages.
Field wiring (continued)

Line voltage wiring (120 VAC)

Make the following line-voltage connections, some of which depend on your system and how the WM97+ control will be programmed. The callouts below refer to Figure 75.

A 120-VAC Power input
1. Provide and install a fused disconnect or service switch (15-ampere rated recommended) as required by applicable codes.
2. Connect minimum 15-ampere, 120 VAC power wiring to WM97+ boiler line voltage terminal strip as shown in Figure 75.
3. If possible, provide a surge suppressor in the supply power line. This will reduce the possibilities of WM97+ control damage due to line surges.

B Ground wire connection terminal block
1. Ground wires must be terminated with ¼-inch female spade terminals.
2. Connect ground wires to the grounding block, item B.

C Zone 1 output (CIRC1), 120 VAC (DHW circuit, if DHW used)
1. The WM97+ control provides 120-VAC outputs for up to three zones.

NOTICE The WM97+ control default setting is for three space heating zones. The control settings must be changed to operate on DHW.
2. Control options require that DHW tanks be controlled from Zone 1 if domestic water priority is required.
3. ALWAYS connect the DHW circulator to Zone 1 if domestic priority is required. This can be done if the DHW tank is piped to the DHW connections out the bottom of the WM97+ or if the DHW tank is piped as a separate zone in a circulator-zoned system.
4. Zone 1 can be used to provide 120 VAC to a zone circulator if DHW is not used.

D Zone 2 output (CIRC2), 120 VAC
1. Use the Zone 2 output to:
 a. Provide 120 VAC to a system circulator (such as on a zone valve system with system circulator).
 b. Provide 120 VAC to a zone circulator.
 c. Provide 120 VAC to a relay coil, with the relay contact used to enable/disable another device.
2. The WM97+ control will activate Zone 2 if the Zone 2 thermostat or input device calls for heat, after DHW heating (if used) is satisfied.

E Zone 3 output (CIRC3), 120 VAC
1. Same as Zone 2. This output is not used for zone valve systems.

Activating system zoning controls

1. To activate system controls (zoning panels, building management controls, etc.):
 a. Use the output from Zone 1 to directly control the DHW circulator. Connect the Zone 2 output to an isolation relay.
 b. Use the relay contact to enable/disable the system space heating controls.
 c. This allows the WM97+ control to provide domestic priority and outdoor reset control of supply water temperature to maximize boiler efficiency.

NOTICE Aqua Logic (CWH) applications, if installed — CIRC1 and ZONE1 circuits are dedicated to the Weil-McLain Aqua Logic Water Heater and cannot be used for other purposes. See Aqua Logic (CWH) manual for details.

WARNING Output circuits are 120 VAC. If an output is to operate a low voltage circuit, use an isolation relay.

WARNING CIRCULATOR POWER — The maximum allowable current for each circulator is 2.2 amps at 120 VAC.

For circulators with higher amp ratings, you must install a circulator relay or starter to provide line voltage to the circulator. For circulators rated over 2.2 amps, connect only the circulator relay or starter coil to the WM97+ circulator terminals.

NOTICE WIRING INFORMATION — See Figure 74, page 64 for wiring connection locations. See Figure 77, page 67 for the complete schematic wiring diagram. See Figure 78, page 68 for the complete ladder wiring diagram.
Field wiring (continued)

Low voltage wiring (24 VAC)

Make the following low-voltage connections, some of which depend on your system and how the WM97+ control will be programmed. The callouts below refer to Figure 76.

H Zone 1 call for heat (space heating or DHW circuit)
1. The WM97+ control provides inputs for up to three zones.

2. Control options require that DHW tanks be controlled from Zone 1 if domestic water priority is required.
3. ALWAYS connect DHW aquastat to Zone 1 input if domestic priority is required. This can be done if the DHW tank is piped to the DHW connections the bottom of the WM97+ or if the DHW tank is piped as a separate zone in the system.

J Zone 2 call for heat (space heating)
1. Use the Zone 2 input to:
 a. Connect the thermostat for a space heating zone.
 b. Connect end switch wire(s) (must be ISOLATED contacts) to start boiler on a call for space heating.
 c. Connect system control input for space heating call for heat (ISOLATED contact only).

2. The WM97+ control will activate the 120-VAC Zone 2 output if the Zone 2 thermostat or input device calls for heat, after DHW heating is satisfied.

K Zone 3 call for heat (space heating)
1. Same as Zone 2. Zone 3 is not used for zone valve systems.

M Outdoor temperature sensor (for outdoor reset)
1. The WM97+ control provides programmable options if using an outdoor temperature sensor. This sensor is supplied with the boiler. The outdoor sensor must be installed unless specifically exempted in the Energy Act statement on page 133.

2. Mount the outdoor sensor on an exterior wall, shielded from direct sunlight or flow of heat or cooling from other sources. The wire outlet on the sensor must be oriented DOWN to prevent water entry.

3. Connect the sensor leads to the ODT TEMP terminals, as shown in the wiring diagrams. Thermostat wire can be used to connect the sensor.

N External limits (will cause manual reset when opened)
1. Connect isolated contacts of external limits across the MAN LIMIT terminals to cause the WM97+ control to lock out (requiring manual reset) if the limit opens. The limit must close and the control must be re-started using the procedure given in this manual.

P External limits (will cause automatic reset if opened)
1. Connect isolated contacts of external limits across the AUTO LIMIT terminals to cause the WM97+ control to shut down the boiler on limit opening, then automatically restart after the limit closes.

R Alarm terminals
1. The alarm contacts will close if the WM97+ control enters lockout. Contacts will remain closed until the WM97+ control is reset.
2. Alarm contacts are isolated and are rated 1 amp at 24 VAC.

WARNING
Thermostats — DO NOT supply 24-volt power to the thermostat circuits (H, J, and K in Figure 76) or attempt to supply 24 volts for any other application.

DO NOT connect any device to ZONE1 if using Aqua Logic (CWH) unit. This circuit is dedicated to the water heater.

For thermostats that require a continuous 24-volt power source, connect the thermostat power input to the "R-C 24 VAC” terminal of the lower voltage terminal strip.

Zone valves — If using 3-wire zone valves, use relays to provide dry contacts to the WM97+ control thermostat connections. The zone valve end switches of 3-wire valves carry 24 VAC from the valve.

Thermostat anticipator setting — 0.1 amps.

WM97+ control factory default settings: DHW heating is configured for direct piping to the bottom of the boiler. The DHW circulator is powered from Zone 1 on a call from the DHW aquastat (connected to Zone 1 input). With this set-up, the boiler circulator is NOT activated during DHW heating. Zone 2 and Zone 3 are also NOT activated during domestic priority heating on Zone 1.

The factory default for space heating is designed for finned-tube baseboard, and set up to activate Zone 2 and Zone 3 on a call for heat from the zone thermostats. See instructions on the following pages to adjust the WM97+ control settings to match installation requirements.
Figure 77 WM97+ schematic wiring diagram (see Figure 78, page 68 for legend and notes)
WARNING: Electrical shock hazard—can cause severe injury or death. Disconnect power before installing or servicing.

* = Items NOT provided.

All wiring must be installed in accordance with: U.S.A.—N.E.C. And any other national, state, or local code requirements. Canada—C.S.A. C22.1 C.E.C. Part 1 and any other national, provincial, or local code requirements.

NOTES (for Schematic and Ladder Diagrams)

1. Thermostats DO NOT supply 24-volt power to the thermostat circuits. If using 3-wire zone valves, use relays to provide dry contacts to the WM97+ control module thermostat connections. For thermostats that require a 24-volt power source for continuous relay operation, connect the thermostat power input to the "R-C 24 VAC" terminal of the lower voltage terminal strip. Thermostat anticipator setting (single zone) — set anticipator for 0.1 amps.

2. Connect additional limits if used across MAN LIMIT terminals if the boiler control module is to manual reset on limit action. Connect across AUTO LIMIT terminals for automatic reset. Remove jumper across terminals used.

3. If any of the original wire as supplied with the appliance must be replaced, use minimum 105 °C wire or equivalent. Exceptions: Ignition lead wire must be obtained from Well-McLain only.

4. For multiple zoning, use either zone valves or circulators. Refer to the component manufacturer's instructions and this manual for application and wiring suggestions.

The boiler circulator MUST remain in boiler as supplied from the factory and CANNOT be used in the system.

5. Call for hot inputs must be isolated contacts of thermostats or 4-wire zone valve and switches. Use isolation relays if using 3-wire zone valves.

6. Refer to component instructions packed with the boiler for application information.

7. Contacts are shown with power OFF.

Shortcut wiring diagram — ladder

Schematic Wiring Diagram — Connector pin numbers on wires (blue numbering) are pins of the three master connectors on the control housing. These are labeled as A, B, and C. At bottom of drawing, the connectors and control boards are shown with the control housing upside down (with control housing rotated forward). **Ladder Wiring Diagram** — Connector pin numbers shown on control boards are those at the control boards, as labeled on the schematic wiring diagram.

Legend for ladder wiring diagram only

- 120 vac field wiring
- 120 vac factory wiring
- High voltage spark ignition wiring
- Low voltage field wiring
- Low voltage factory wiring
- Ground connections

Control Module Low Voltage Section

Control Module High Voltage Section

Zone Valve Systems:

- Direct-Connected — the line voltage outputs are not used.
- Primary/Secondary — Control this circuit with the boiler control module, unless otherwise noted.

Part number 550-142-120/1113
EXPRESS SETUP — using default settings

CAUTION MANDATORY CONTROL SETTINGS — The following settings must be checked and adjusted if necessary: BOILER MODEL and HIGH ALTITUDE in BOILER SETTINGS menu. Also enter information at the MAINTENANCE INFO screen. See instructions on the following pages for menu access and control settings.

1. **The WM97+ control is factory set to supply three zones of space heating ONLY. Control settings must be changed to operate a DHW circuit.**

2. **All zones use the same temperature settings (or outdoor reset curve if outdoor sensor is connected — see page 133).**

3. **The terminal units in the system must be finned tube baseboard only. (Other terminal units require changes in the WM97+ control setup.)**

4. **The control is set up to accept up to three inputs from zone thermostats or end switches.**

5. **The WM97+ control will regulate boiler outlet water temperature as follows:**
 - Outdoor sensor installed (see page 133):
 - 180°F at 0°F outside temperature
 - 130°F at 70°F outside temperature
 - Outdoor sensor not installed (see page 133):
 - 180°F fixed target temperature

6. **If the system is zoned with circulators**, follow the guidelines in Figure 79 and guidelines below the illustration.

7. **If the system is zoned with zone valves**, follow Figure 80, page 70 or Figure 81, page 70 Figure 79 and guidelines below each illustration.

CAUTION Use Figure 81, page 70 **ONLY** if the system meets the limitations given on page 44 and page 45. Install a system circulator when applying Figure 80, page 70. Failure to comply could cause system problems.

Legend and guidelines — Figure 79

<table>
<thead>
<tr>
<th>1</th>
<th>WM97+ boiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
</tr>
<tr>
<td>4</td>
<td>Relief valve piping to drain — see page 39</td>
</tr>
<tr>
<td>6</td>
<td>Isolation valves</td>
</tr>
<tr>
<td>8</td>
<td>Supplementary expansion tank, diaphragm type, if used</td>
</tr>
<tr>
<td>9</td>
<td>Air separator</td>
</tr>
<tr>
<td>10</td>
<td>Flow/check valves</td>
</tr>
<tr>
<td>11</td>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
</tr>
<tr>
<td>12</td>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
</tr>
<tr>
<td>14</td>
<td>Primary/secondary bypass valve — see page 40 or page 41 for information — OPEN: Boiler connected as primary/secondary</td>
</tr>
<tr>
<td>20</td>
<td>Make-up water supply</td>
</tr>
<tr>
<td>23</td>
<td>Backflow preventer, if used</td>
</tr>
<tr>
<td>24</td>
<td>Zone circulators</td>
</tr>
<tr>
<td>25</td>
<td>Pressure reducing valve, if used</td>
</tr>
<tr>
<td>26</td>
<td>Internal expansion tank, diaphragm-type</td>
</tr>
<tr>
<td>27</td>
<td>Quick-fill valve, if used</td>
</tr>
<tr>
<td>28</td>
<td>Install pipe cap supplied with boiler (see Figure 7, page 13)</td>
</tr>
<tr>
<td>29</td>
<td>Install drain valve supplied with boiler (see Figure 7, page 13)</td>
</tr>
<tr>
<td>30</td>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
</tr>
<tr>
<td>31</td>
<td>Heating circuits</td>
</tr>
<tr>
<td>32</td>
<td>Additional heating circuits, if any</td>
</tr>
</tbody>
</table>

- Items supplied with boiler: all other items supplied by installer

Notice The piping shown is adapted from Figure 55, page 48, **without DHW connected.** The WM97+ control settings would have to be changed to allow DHW operation. Follow all appropriate instructions on page 48.
EXPRESS SETUP — using default settings (continued)

Figure 80 Using default control settings (No DHW)
ZONE VALVE-zoned systems
primary/secondary piping

Figure 81 Using default control settings (No DHW)
ZONE VALVE-zoned systems
direct connection piping (NOT for WM97+155)

Legend and guidelines — Figure 80 and Figure 81

1. **Recommendation**: Wire zone thermostats to zone valves. Wire zone valve end switches to the ZONE 2 input on the 24-VAC terminal strip. See Figure 76, page 66. Use isolation relays if connecting 3-wire zone valve end switches. Boiler ZONE 1 and ZONE 3 are not used.

2. **Figure 80 ONLY** — Wire the **CIRC2** circulator output to the system circulator. See Figure 75, page 65. **CIRC1** and **CIRC3** are not used.

<table>
<thead>
<tr>
<th>WM97+ boiler</th>
<th>WM97+155</th>
<th>WM97+70/110</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM97+ boiler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect water heater, if used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief valve, supplied with boiler, field piped — MUST be piped to boiler supply connection — see page 13 for information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relief valve piping to drain — see page 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHW circulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System circulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary expansion tank, diaphragm type, if used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air separator</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Flow/check valves</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Purge/drain valves (one drain valve is supplied loose with the boiler)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Boiler circulator, with integral flow/check valve, factory installed in boiler</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Zone valves</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Primary/secondary bypass valve — see page 40 or page 41 for information — OPEN: Boiler connected as primary/secondary</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Make-up water supply</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>By-pass pressure regulator, REQUIRED for zone valve systems</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Backflow preventer, if used</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Zone circulators</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Pressure reducing valve, if used</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>70/110 only — Internal expansion tank, diaphragm-type</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Quick-fill valve, if used</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>DHW boiler water supply connection, when used — see page 13 for information</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>DHW boiler water return connection, when used — see page 13 for information</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Pressure/temperature gauge, supplied with boiler, field piped</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Heating circuits</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Additional heating circuits, if any</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>= Items supplied with boiler — all other items supplied by installer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION Use Figure 81 ONLY if the system meets the limitations given on page 44 and page 45. Install a system circulator when applying Figure 80. Failure to comply could cause heat delivery problems.
WM97+ control operation

Temperature settings — You must ensure that the WM97+ control is set for the proper water temperatures for the system. Excessive water temperature can cause significant property damage in some applications.

Multi-temperature systems — If the heating system includes circuits that require lower temperature water (radiant slab circuits, for example) as well as higher temperature circuits (DHW, finned tube baseboard, etc.), it is recommended to protect low-temperature circuits with limit controls that are wired to a WM97+ control external limit circuit. Failure to provide regulation can result in substantial property damage.

WM97+ control features

- Blower speed modulation to control the WM97+ boiler’s firing rate.
- Advanced PID response to anticipate system needs based on response to heat input.
- Graphic and robust text display for ease of operation monitoring and troubleshooting.
- Preset operating parameters for typical heating systems (finned tube baseboard, radiant floor, DHW, and others), including target temperatures, reset curves and circulator assignments.
- Control of up to three circulators or zone devices, assignable for each of the three possible zone inputs. (Boiler circulator controlled internally.)
- Programmable priority assignment for DHW input.
- Integral outdoor reset option (see page 133), with reset curves matched to the system type selected.
- Dual sensors for boiler outlet temperature and flue temperature, providing redundant protection.
- Integral low water cut-off.
- Boiler is shipped with an outdoor sensor, allowing outdoor reset operation for maximum boiler efficiency. See page 133.

Sequence of operation

1. Figure 82 is a summary of the operating sequence for the WM97+ control.
2. The symbols shown appear in the display as the WM97+ control cycles the boiler.
3. The wrench symbol appears when a scheduled maintenance date arrives. This informs the homeowner to call the contractor for service.
4. The exclamation mark symbol appears if a problem has been detected.

WM97+ control setup

WARNING! BEFORE PROCEEDING, perform essential control settings as instructed on page 73.

1. See page 74 for an overview of the WM97+ control menus. This page also gives the location of instruction manual information for each of the main menus.

<table>
<thead>
<tr>
<th>Figure 82</th>
<th>Control sequence of operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display status graphic</td>
<td>Control action (also see Figure 83, page 72)</td>
</tr>
</tbody>
</table>
| POWER UP | • Check the boiler model listed on the power-up screen. If it is not correct, turn off the boiler. See page 75 to change setting.
• When power is turned on, the screen lists sensors that are detected. If any sensor is not listed, make sure it is connected correctly. Turn off power and restart. |
| ... | • Standby — no calls for heat
• Toggles through no dots, 1 dot, 2 dots, then 3 dots while in standby (wrench symbol will show instead if maintenance is needed) |
| Blower on | • Call for heat detected
• Display on with BLUE light (space heating) or
PURPLE light (DHW)
• Start min/max on times if more than one system is calling — highest priority starts first
• Start circulators for this priority setup
• Calculate target temp — if sensor temp is below target temp, begin firing sequence
• Blower to ignition speed for prepurge |
| Ignition on | • After prepurge times out, begin ignition cycle
• Activate gas valve and ignition spark
• Continue ignition spark for ignition period
• Turn off spark and use electrode to check for flame signal |
| Space heating | • Flame detected
• Release boiler to modulation
• NOTE: If flame is not detected, the gas valve is turned off, blower turns on (postpurge), and control starts cycle again. After 5 failures, the control waits 60 minutes, then tries again.
• If priority timer times out, switch to next priority and start priority timer
• If demand satisfied, go to postpurge |
| DHW heating or Aqua Logic (CWH) | • Flame detected
• Release boiler to modulation
• NOTE: If flame is not detected, the gas valve is turned off, blower turns on (postpurge), and control starts cycle again. After 5 failures, the control waits 60 minutes, then tries again.
• If priority timer times out, switch to next priority and start priority timer
• If demand satisfied, go to postpurge |
| Blower on | • Display turns RED, toggling between graphic screen and maintenance screen (occurs if maintenance schedule timer times out)
• Will show during standby only
• Boiler operates as normal |
| Maintenance | • Display turns RED due to error or limit event
• Flashing display means lockout condition — display toggles between three screens as in Figure 112, page 104. |
| Error/fault | • Warm weather shutdown — the boiler will not be allowed to fire on space heating if the outside temperature is greater than the WWSD setting.
DHW operation is not affected by WWSD. |
WM97+ control operation

Figure 83 WM97+ control display screens and typical navigation

Aqua Logic (CWH) Installations — See Aqua Logic manual for additional screen information. When the WM97+ control detects the CWH temperature sensors, it automatically enables the CWH screens and CWH control operation.

Screen colors
- (Blue = space heating or when any button is pressed)
- (Screen will show solid red, with the exclamation mark symbol, if a non-shutdown failure occurs; i.e., failure of a non-critical sensor, such as outdoor or system supply or return sensor)

Buttons
- Move selection up
- Move selection down
- Next screen
- Previous screen
- Enter

Initial screen on power-up
- Shows DETECTED if CWH tank sensor is connected, otherwise, shows NOT DETECTED
- Shows whether outdoor sensor is attached or NOT attached
- Screen advances on push of any button or after 10 seconds with no activity
- Screen sequence depends on CWH:
 - CWH detected, but not configured — screen switches to RED DANGER screen (see CWH manual for details)
 - CWH detected and configured or CWH NOT detected — screen switches to the standby screen below

Screen
- Operating status
- Status graphic
- Firing rate bar
- Active system
- Shows to press info to go to INFO

Display
- Time and date (also flashes error code and screen turns red)
- Active system type
- Firing rate
- Setpoint temperature
- Supply temperature
- Return temperature
- Outdoor air temperature
- CWH tank TOP temperature (appears only if a CWH is active)
- Zones calling for heat
- Circulators activated (125BC) (BC = boiler circulator)
- Select to change settings
- Scroll up or down
- Previous screen or ENTER

Press any button — screen turns blue

Press to switch to INFO screen.

The INFO screen, below is for at-a-glance information during normal operation.

Figure 83 continued

See Aqua Logic manual for additional screen information. When the WM97+ control detects the CWH temperature sensors, it automatically enables the CWH screens and CWH control operation.
ESSENTIAL settings

WARNING THE CONTROL SETTINGS LISTED BELOW MUST BE MADE BEFORE STARTING THE BOILER. Failure to comply could result in incorrect operation of the boiler, causing possible severe personal injury, death or substantial property damage.

Step 1 Read about menu access and navigation on page 74.

Step 2 Turn OFF power to the boiler.

Step 3 Turn off gas supply to the boiler by closing the boiler's manual gas valve.

Step 4 Disconnect thermostat input wires to the boiler at the low voltage terminal block.

Step 5 Turn ON power to the boiler. Turn boiler ON/OFF switch to ON.

Step 6 Navigate to the BOILER SETTINGS / BOILER MODEL screen.

Step 7 Read the boiler model shown on the display.

Step 8 If the boiler model number shown does NOT match the boiler, the selection MUST be changed to the correct model number. Failure to comply could result in severe personal injury, death or substantial property damage.

Step 9 Navigate to the BOILER SETTINGS / HIGH ALTITUDE screen.

Step 10 If the boiler is installed at altitude above 5,500 feet, the selection must be changed to YES. Failure to comply could result in severe personal injury, death or substantial property damage.

THE CONTROL SETTINGS LISTED BELOW SHOULD BE MADE BEFORE STARTING THE BOILER. These settings provide information about boiler start-up and service. This information will help reduce troubleshooting time and inform technicians working on the equipment about boiler history.

Step 1 Navigate to the CONTRACTOR MENU / SET DATE AND TIME screen.

Step 2 Enter current date and time by accessing each screen and setting the data.

POWER OUTAGES — The date and time information will be saved for brief power interruptions. For interruptions longer than 30 minutes, the date and time information will be lost.

Step 3 Navigate to the CONTRACTOR MENU / MAINTENANCE INFO screen.

Step 4 Verify boiler model is shown correctly.

Step 5 Input contractor name, phone, boiler CP#, installed date and interval setting. The interval setting is the time for a maintenance reminder to appear on the display. Press RESET REMINDER to reset the dates.

Step 6 Turn off power to the boiler. Turn boiler ON/OFF switch to OFF. Reconnect thermostat input wires on low voltage terminal strip.

Step 7 To adjust controls settings, proceed to the next page. If settings are complete, proceed with start-up on page 87.

WARNING Aqua Logic (CWH) Installations — Follow all instructions in the Aqua Logic (CWH) manual to verify that the mixing valve is installed and operational before proceeding further with the installation. Failure to correctly install the mixing valve and all necessary temperature regulating devices in the system could result in severe personal injury or death.
WM97+ control settings

Figure 84 WM97+ control menu access — accessing contractor menus

Aqua Logic (CWH) Installations — See Aqua Logic Water Heater manual for additional screen information. When the WM97+ control detects the combi temperature sensors, it automatically enables the CWH screens and CWH control operation.

WARNING BEFORE PROCEEDING, perform essential control settings as instructed on page 73.

Control menus — OVERVIEW

1. Access contractor menus by pressing and holding the UP and DOWN arrow keys at the same time for 7 seconds.
2. See Figure 84 for the screen sequences up to the BOILER SETTINGS and SYSTEM SETTINGS menus.

NOTICE The DHW settings must be modified to allow operation of a DHW circuit. The circuit must be wired ONLY to Zone 1. DHW settings are done in the SYSTEMS SETTINGS / DHW SETTINGS menus.

3. Adjust control settings as needed for the space heating and DHW systems supplied by the boiler.
4. Wire the line voltage and low voltage connections as required.

5. The CONTRACTOR MENU screen will show:

 a. BOILER SETTINGS — see page 75 for details
 b. SYSTEM SETTINGS — see below
 c. DIAGNOSTICS — see page 83
 d. MAINTENANCE INFO — see page 73 and page 86
 e. SET DATE AND TIME — see page 73 and page 86

6. The SYSTEM SETTINGS screen will show:

 a. HEAT SETTINGS — see page 77
 b. DHW SETTINGS — see page 80
 c. CIRCULATOR EXERCISING — see page 82
 d. FREEZE PROTECTION CIRCS — see page 82
BOILER SETTINGS menus

Figure 85 BOILER SETTINGS menus (see Figure 86, page 76 for setting values and descriptions)

- Select button (press to select a highlighted entry and move to next screen)
 - Use ▲ and ▼ keys to highlight the desired item on a screen.

BOILER MODEL
- HIGH ALTITUDE: NO
- HIGH LIMIT TEMP: 200°F
- WWSD TEMP: 70°F
- ADJUST OUTDOOR: 0°F

SELECT OPTION ▲▼ PREVIOUS ENTER

Note 1 Use ▲ and ▼ keys to change the values on these screens. Use ▼ key to save the value.

OUTDOOR TEMPERATURE CONNECTION
- 0°F

SELECT OPTION ▲▼ PREVIOUS ENTER

WARM WEATHER SHUTDOWN TEMPERATURE
- 70°F

SELECT OPTION ▲▼ PREVIOUS ENTER
BOILER SETTINGS menus (continued)

BOILER MODEL

WARNING Check the boiler model against the model listed on the boiler’s rating plate. Change the selection to the correct model if not. Also verify the model number on the WM97+ control display at power-up. Failure to correct could result in severe personal injury, death or substantial property damage.

HIGH ALTITUDE

WARNING If the boiler is installed at an altitude above 5,500 feet, select YES for high altitude. The WM97+ control will automatically adjust firing rates (blower speeds) to compensate for altitude.

HIGH LIMIT TEMPERATURE

NOTICE The boiler’s high limit temperature during normal operation is fixed at 200°F and cannot be changed. The HIGH LIMIT TEMPERATURE setting in the WM97+ control menu is a temporary setting for test purposes ONLY.

1. If boiler outlet water temperature exceeds this temperature, the WM97+ control will shut down the boiler and enter lockout. Manual reset is required to restart the boiler.

2. The HIGH LIMIT TEMPERATURE setting will automatically return to 200°F if power is turned off. The boiler will restart when power is restored.

3. Use this control setting only to test the control’s high limit function.

WWSD

1. WWSD stands for “warm weather shutdown.” It means the boiler will not be allowed to fire if the outside temperature is greater than the WWSD setting.

2. When the boiler is kept off because the outside temperature is above WWSD, the graphic display will show “WWSD,” and the boiler will remain in standby until the outside temperature drops below WWSD temperature.

3. WWSD does not apply to DHW systems.

4. The outdoor sensor must be installed to use this function. The outdoor sensor must be installed unless specifically exempted in the Energy Act statement on page 133.

ADJUST OUTDOOR

1. Use this setting to adjust the outdoor sensor temperature to account for solar or other effects, such as long lead wire, that would cause the sensor to read incorrectly.

Figure 86 BOILER SETTINGS menus (see Figure 84, page 74 for access information)

<table>
<thead>
<tr>
<th>Menu/Item</th>
<th>Units</th>
<th>Low Value</th>
<th>High Value</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Model</td>
<td>70 110 155</td>
<td>factory</td>
<td></td>
<td></td>
<td>WARNING THIS MUST BE SET CORRECTLY FOR SAFE OPERATION. Adjusts blower speeds and flame sense (Display will show “HA” after the model number if high altitude has been selected, below.)</td>
</tr>
<tr>
<td>High Altitude</td>
<td>yes or no</td>
<td>no</td>
<td></td>
<td></td>
<td>Adjusts ignition and low fire fan speed (for altitudes above 5,500 feet only)</td>
</tr>
<tr>
<td>High Limit</td>
<td>°F</td>
<td>50</td>
<td>200</td>
<td>200</td>
<td>If boiler out temperature reaches this temperature, boiler will lockout, which requires a manual reset</td>
</tr>
<tr>
<td>WWSD Temp</td>
<td>°F</td>
<td>Off, 50</td>
<td>100</td>
<td>70</td>
<td>Boiler will not respond to heating calls above this outdoor temp</td>
</tr>
<tr>
<td>Adjust Outdoor</td>
<td>°F (difference)</td>
<td>-10</td>
<td>+10</td>
<td>0</td>
<td>This value plus outdoor sensor reading equals outdoor temp (Use this setting to compensate for solar gain or other factors that cause a shift in sensor temperature.)</td>
</tr>
</tbody>
</table>
HEAT SETTINGS menus

Figure 87 HEAT SETTINGS menus (see Figure 89, page 79 for setting values and descriptions)

- **SELECT** button (press to select a highlighted entry and move to next screen)
 - Use ▲ and ▼ keys to highlight the desired item on a screen.

HEAT SETTINGS
- **SYSTEM TYPE:** FTB
- **BOILER CIRC SPD:** MED
- **TEMPERATURES TIMES**
- **MAXIMUM RATE:** ####
- **MINIMUM RATE:** ####
 - **CHANGE SETTINGS** ▲ ▼ ▼ PREVIOUS ENTER

WARNING
- Speed settings — See page 100 for blower speed adjustment procedure and acceptable speeds.

Note 1 Use ▲ and ▼ keys to change the values on these screens. Use ■ key to save the value.

Note 2 Screen headings and value units (degrees, minutes, seconds, etc.) will depend on the item selected.

System type

<table>
<thead>
<tr>
<th>System type</th>
<th>Display</th>
<th>Preset temperatures (see next page for description of settings)</th>
<th>MAX SUPPLY Temp</th>
<th>MIN OUTDOOR Temp</th>
<th>MIN SUPPLY Temp</th>
<th>MAX OUTDOOR Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan-coil</td>
<td>FCL</td>
<td>190</td>
<td>0</td>
<td>140</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Finned tube baseboard</td>
<td>FTB</td>
<td>180</td>
<td>0</td>
<td>130</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Cast iron baseboard</td>
<td>CIB</td>
<td>180</td>
<td>0</td>
<td>120</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Cast iron radiators</td>
<td>CIR</td>
<td>180</td>
<td>0</td>
<td>120</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Radiant – slab on grade</td>
<td>RSG</td>
<td>120</td>
<td>0</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Radiant – thin slab</td>
<td>RTS</td>
<td>140</td>
<td>0</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Radiant – below floor (staple up)</td>
<td>RFU</td>
<td>160</td>
<td>0</td>
<td>90</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Radiant – above floor (sleeper system)</td>
<td>RAF</td>
<td>140</td>
<td>0</td>
<td>90</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Custom</td>
<td>CUS</td>
<td>190</td>
<td>0</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
HEAT SETTINGS menus (continued)

HEAT SETTINGS
1. The heat settings menus are for setting control operation during space heating. The settings apply to all space heating zones. See Figure 89, page 79 for a listing of menu listings.
2. If DHW is used, the settings for control operation during DHW calls is set under the DHW SETTINGS menus (see Figure 90, page 80).

SYSTEM TYPE
1. Select the appropriate system type, based on the heating terminal units in the system. Use the CUSTOM selection to set the WM97+ control for a different system type.
2. The temperature presets are chosen based on normal best setting for the terminal units. The temperature values can be changed, if desired, under “TEMPERATURES.”

BOILER CIRCULATOR SPEED
1. The boiler circulator speed can be chosen as needed for the flow requirements of the installation.

NOTICE PRIMARY/SECONDARY operation (boiler internal by-pass valve OPEN) — For most applications operating as primary/secondary, set the boiler circulator speed to LOW. If the temperature rise through the boiler is not acceptable at this flow, increase the speed to MED. Temperature rise should preferably be 30°F.
2. The LED on the circulator flashes based on speed (on constantly at high speed).

TEMPERATURES (HEATING DESIGN TEMPERATURES)
1. Set desired temperatures for space heating zones.
2. For an explanation of the target temperatures and associated outdoor temperatures, see Figure 88.

MAX SUPPLY
1. Set MAX SUPPLY to the required supply water temperature for the system at design maximum heat loss (typically 180°F for finned tube baseboard on new installations).

MIN SUPPLY
1. MIN SUPPLY should equal the desired minimum supply water temperature for the system.
2. The factory default is 130°F. This could be set as low as 70°F, which would supply “zero heat” when outdoor temperature is 70°F, because supply water temp would equal room temp.
3. See examples in Figure 88.

MAX OUTDOOR
1. MAX OUTDOOR means the outdoor temperature at which the target temperature reaches its minimum (MIN SUPPLY).
2. In the example of Figure 88, this occurs at 70 °F (the factory default).

MIN OUTDOOR
1. MIN OUTDOOR means the outdoor temperature at which the target temperature reaches its maximum value (MAX SUPPLY).
2. In the example of Figure 88, this occurs at 0°F outside (the factory default setting).
3. MIN OUTDOOR should equal the ODT (outdoor design temperature) for the installation’s location.

MODULATE ON DIFF
1. The temperature must drop this many degrees below target temperature for the boiler to come on when a call for heat is present.

MODULATE OFF DIFF
1. While the boiler is firing, as the temperature increases above the target temperature, the boiler firing rate is reduced.
2. At this many degrees above the target temperature, the boiler shuts down.

TIMES (HEATING TIMES)

MIN ON TIME
1. This is the minimum time the boiler will satisfy the call for space heating before switching to DHW (if there is a DHW call).

BOOST INTERVAL
1. This applies when in outdoor reset mode (outdoor sensor installed — see page 133).
2. The boost timer starts on a call for heat. If the boost interval time passes and the call for heat is still on, the WM97+ control “boosts” the calculated target outlet water temperature by 10°F.
3. This occurs again if another boost interval elapses.
4. Boost will continue until the setpoint (target temperature) reaches the MAX SUPPLY setting.

5. The purpose of boost is to compensate for changes in demand not addressed by the reset curve. Typically, set boost to 30 minutes. The factory default is “OFF” — that is, boost is not enabled with default settings.

PRE PUMP TIME
1. The boiler circulator and zone circulators (if activated with the WM97+ zone circulator outputs) will start this amount of time before the burner is started.

POST PUMP TIME
1. The boiler circulator and zone circulators (if activated with the WM97+ zone circulator outputs) will continue this

<table>
<thead>
<tr>
<th>Menu/Item</th>
<th>Units</th>
<th>Low Value</th>
<th>High Value</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Type</td>
<td>Types</td>
<td>Off</td>
<td>Custom</td>
<td>FTB</td>
<td></td>
</tr>
<tr>
<td>Boiler Circulator Spd</td>
<td>Selection</td>
<td>Off</td>
<td>High</td>
<td>Med</td>
<td>Select speed or select OFF to deactivate boiler during space heating call</td>
</tr>
<tr>
<td>Max Supply</td>
<td>°F</td>
<td>60</td>
<td>190</td>
<td>180</td>
<td>Boiler enters manual reset lockout at 200°F</td>
</tr>
<tr>
<td>Min Supply</td>
<td>°F</td>
<td>60</td>
<td>190</td>
<td>130</td>
<td>N/A - DHW does not use reset</td>
</tr>
<tr>
<td>Max Outdoor</td>
<td>°F</td>
<td>50</td>
<td>100</td>
<td>70</td>
<td>N/A - DHW does not use reset</td>
</tr>
<tr>
<td>Min Outdoor</td>
<td>°F</td>
<td>–20</td>
<td>50</td>
<td>0</td>
<td>N/A - DHW does not use reset</td>
</tr>
<tr>
<td>Modulate On Diff</td>
<td>°F</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>Boiler turns on if temperature drops below target minus differential on</td>
</tr>
<tr>
<td>Modulate Off Diff</td>
<td>°F</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>Boiler shuts down if modulates past target plus differential off</td>
</tr>
<tr>
<td>Min On Time</td>
<td>minutes</td>
<td>off</td>
<td>240</td>
<td>30</td>
<td>Shortest time boiler will satisfy space heating system before switching to DHW</td>
</tr>
<tr>
<td>Boost Interval</td>
<td>minutes</td>
<td>off</td>
<td>240</td>
<td>off</td>
<td>When operating on ODR increases target 10°F when this time expires until reaching MAX</td>
</tr>
<tr>
<td>Prepump Time: ### SEC</td>
<td>seconds</td>
<td>0</td>
<td>240</td>
<td>20</td>
<td>Additional time to run circulators longer than standard 10 second time</td>
</tr>
<tr>
<td>Postpump Time: ### SEC</td>
<td>seconds</td>
<td>off</td>
<td>240</td>
<td>30</td>
<td>Circulator run time after call for heat ends</td>
</tr>
</tbody>
</table>

Figure 89 HEAT SETTINGS menus (see Figure 84, page 74 for access information)

<table>
<thead>
<tr>
<th>Menu/Item</th>
<th>Units</th>
<th>Low Value</th>
<th>High Value</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Rate</td>
<td>RPM</td>
<td>1100</td>
<td>4300</td>
<td>4150</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>WM97+70</td>
<td>RPM</td>
<td>1400</td>
<td>5650</td>
<td>5450</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>WM97+110</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>5300</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>WM97+155</td>
<td>RPM</td>
<td>1100</td>
<td>4300</td>
<td>1100</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>Minimum Rate</td>
<td>RPM</td>
<td>1400</td>
<td>5650</td>
<td>1400</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>WM97+70</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>1300</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>WM97+110</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>1300</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
<tr>
<td>WM97+155</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>1300</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup)</td>
</tr>
</tbody>
</table>

During combustion testing, the Maximum rate must be set to the Maximum Rate “High Value” listed in Figure 89 to allow the boiler to be set to maximum input during high-fire set-up and testing.
DHW SETTINGS

1. The DHW SETTINGS menus are for setting control operation during DHW operation. The settings apply ONLY to Zone 1. (see Figure 90)

2. If DHW is used, the settings for control operation during DHW calls for heat are set under the DHW SETTINGS menus (see Figure 90, page 80).

DHW

1. Use this setting to enable or disable DHW operation of the WM97+ control.

2. The temperature presets are chosen based on normal best setting for DHW systems. The temperature values can be changed, if desired, under “TEMPERATURES.”

BOILER CIRCULATOR SPEED

Direct-connected DHW (bottom connections)

1. The boiler circulator speed must be set to OFF for directly-connected DHW applications.

2. A separate DHW circulator must be supplied and wired to Circulator 1 output.

DHW as a zone in the system

1. Boiler circulator as system circulator — The boiler circulator should be set to HIGH for most applications on which the boiler circulators provides system flow.

2. Primary/secondary piping, zone valve-zoned or circulator zoned — Set the boiler circulator speed to LOW. Increase speed if needed.

Aqua Logic (CWH) Installations — See Aqua Logic Water Heater manual for screen information. When the WM97+ control detects the combi temperature sensors, it automatically enables the CWH screens and CWH control operation.

Note 1: Use ▲ and ▼ keys to change the values on these screens. Use ■ key to save the value.

Note 2: Screen headings and value units (degrees, minutes, seconds, etc.) will depend on the item selected.

Note 3: If DHW is set to OFF, as in default setting, the screen will be as below:

CONTINUED ON NEXT PAGE
DHW SETTINGS menus (continued)

TEMPERATURES (DHW)

NOTICE

DHW priority — The WM97+ control gives priority to DHW operation. During DHW call for heat, the space heating zone outputs (Zone 2 and Zone 3) are disabled. This continues until the DHW call ends or the DHW MAX ON TIME has elapsed.

BOILER SUPPLY

1. The WM97+ control will regulate boiler firing to provide outlet water at this temperature.
2. For most DHW applications, set this to 190°F. A lower supply temperature can be used, but will reduce the indirect water heater heating capacity.

BOILER ON DIFF

1. The temperature must drop this many degrees below target temperature for the boiler to come on.

BOILER OFF DIFF

1. While the boiler is firing, as the temperature increases above the target temperature, the boiler firing rate is reduced.
2. At this many degrees above the target temperature, the control will temporarily turn off burner. The burner will be restarted when temperature drops below TARGET TEMPERATURE minus BOILER ON DIFF.

THERMOMETERS (DHW)

Aqua Logic (CWH) Installations — See Aqua Logic manual for control settings information.

TIMES (DHW TIMES)

MAX ON TIME

1. This is the longest time the boiler will continue in DHW mode before switching to space heating (if there is a space heating call).

WARNING Setting MAX ON TIME to off will cause the control to never switch to space heating while DHW call for heat is present. This could present a freeze hazard for some installations if the DHW aquastat were to remain closed indefinitely.

PRE PUMP TIME

1. The boiler circulator (if enabled) and DHW circulator will start this amount of time before the burner is started.

POST PUMP TIME

1. The boiler circulator (if enabled) and DHW circulator will continue this amount of time after the burner is shut down when the call for heat is satisfied.

MIN RATE / MAX RATE

1. Use to set minimum and maximum boiler inputs by setting minimum and maximum blower RPM.

Figure 91 DHW SETTINGS menus (see Figure 84, page 74 for access information)

<table>
<thead>
<tr>
<th>Menu/Item</th>
<th>Units</th>
<th>Low Value</th>
<th>High Value</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHW:</td>
<td>Selection</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>This setting must be ON to operate in DHW mode</td>
</tr>
<tr>
<td>Boiler Supply</td>
<td>°F</td>
<td>60</td>
<td>190</td>
<td>190</td>
<td>Boiler enters manual reset lockout at 200°F</td>
</tr>
<tr>
<td>Boiler Circulator Spd</td>
<td>Selection</td>
<td>Off</td>
<td>High</td>
<td>Off</td>
<td>Select speed or select OFF to deactivate boiler during space heating call</td>
</tr>
<tr>
<td>Modulate On Diff</td>
<td>°F</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>Boiler turns on if temperature drops below target minus differential on</td>
</tr>
<tr>
<td>Modulate Off Diff</td>
<td>°F</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>Boiler shuts down if modulates past target plus differential off</td>
</tr>
<tr>
<td>Max On Time</td>
<td>minutes</td>
<td>off</td>
<td>240</td>
<td>30</td>
<td>Longest time boiler will satisfy this system before switching to DHW</td>
</tr>
<tr>
<td>Prepump Time: ### sec</td>
<td>seconds</td>
<td>0</td>
<td>240</td>
<td>20</td>
<td>Additional time to run circulators longer than standard 10 second time</td>
</tr>
<tr>
<td>Postpump Time: ### sec</td>
<td>seconds</td>
<td>off</td>
<td>240</td>
<td>30</td>
<td>Circulator run time after call for heat ends</td>
</tr>
<tr>
<td>Maximum Rate</td>
<td>RPM</td>
<td>1100</td>
<td>4300</td>
<td>4150</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup) NOTE: Adjusting boiler firing rate will affect AFUE rating.</td>
</tr>
<tr>
<td>WM97+70</td>
<td>RPM</td>
<td>1400</td>
<td>5650</td>
<td>5450</td>
<td></td>
</tr>
<tr>
<td>WM97+110</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>5300</td>
<td></td>
</tr>
<tr>
<td>WM97+155</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>5300</td>
<td></td>
</tr>
<tr>
<td>Minimum Rate</td>
<td>RPM</td>
<td>1100</td>
<td>4300</td>
<td>1100</td>
<td>Boiler Model and altitude specific (derated automatically if HIGH ALTITUDE is selected in control setup) NOTE: Adjusting boiler firing rate will affect AFUE rating.</td>
</tr>
<tr>
<td>WM97+70</td>
<td>RPM</td>
<td>1400</td>
<td>5650</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>WM97+110</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>WM97+155</td>
<td>RPM</td>
<td>1300</td>
<td>5500</td>
<td>1300</td>
<td></td>
</tr>
</tbody>
</table>
CIRCULATOR EXERCISING and
FREEZE PROTECTION CIRCULATORS menus

Figure 92 CIRCULATOR (SYSTEM SETTINGS) menu navigation (see Figure 84, page 74 for access information)

<table>
<thead>
<tr>
<th>Menus</th>
<th>Next screen</th>
<th>Next screen</th>
<th>Next screen</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM SETTINGS</td>
<td>CIRCULATOR EXERCISING</td>
<td>CIRCULATOR 1: ***</td>
<td>On/Off</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIRCULATOR 2: ***</td>
<td>On/Off</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIRCULATOR 3: ***</td>
<td>On/Off</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOILER CIRC: ***</td>
<td>On/Off</td>
<td>On</td>
</tr>
<tr>
<td>FREEZE PROTECT CIRCS</td>
<td>CIRCULATOR 1: ***</td>
<td>On/Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIRCULATOR 2: ***</td>
<td>On/Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIRCULATOR 3: ***</td>
<td>On/Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOILER CIRC: ***</td>
<td>On/Off</td>
<td>On</td>
</tr>
</tbody>
</table>

CIRCULATOR EXERCISING

1. For each circulator, select whether you want the WM97+ control to automatically start the circulator and run for 10 seconds for each 72-hour period of inactivity.

FREEZE PROTECTION CIRCULATORS

1. This function automatically fires the boiler at low fire and starts the circulators chosen if the heat exchanger sensor detects a temperature less than 40 °F. The circulators turn off when the temperature rises above 45 °F.
DIAGNOSTIC menu

<table>
<thead>
<tr>
<th>Menus</th>
<th>Next screen</th>
<th>Next screen</th>
<th>Next screen</th>
<th>Next screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTICS</td>
<td>TEMPERATURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STATUS: *******</td>
<td>BOILER OUT1: ***°F</td>
<td>BOILER OUT2: ***°F</td>
<td>BOILER IN: *******</td>
</tr>
<tr>
<td>ERRORS</td>
<td>CONTROL FAULT: *******</td>
<td>IGNITION RETRIES: *******</td>
<td>MANUAL RESET CNT: *******</td>
<td>AUTO RESET CNT: *******</td>
</tr>
<tr>
<td>SOFTWARE VERSIONS</td>
<td>DISPLAY: W#.##</td>
<td>MAIN MICRO: W#.##</td>
<td>SECOND MICRO: W#.##</td>
<td></td>
</tr>
<tr>
<td>MANUAL RESET</td>
<td>PRESS ENTER TO RESET THE FOLLOWING ERROR</td>
<td>(SCREEN SHOWS A LIST OF ERRORS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 93 DIAGNOSTICS menu navigation (see Figure 84, page 74 for access information)

Follow information at the bottom of each screen to navigate to next/previous screen or enter/save data.
DIAGNOSTICS menu (continued)

Figure 94 DIAGNOSTICS menu details (see Figure 93, page 83 for access information)

<table>
<thead>
<tr>
<th>Menu/Item</th>
<th>Units</th>
<th>Low Value</th>
<th>High Value</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO RESET ALL HISTORY COUNTERS TO ZERO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>To reset all history counters to zero: Enter the DIAGNOSTICS menu. Then press and hold the left and right arrows located below the control display. Hold for 5 seconds. This will cause ALL history to be deleted. To maintain history, reset counters individually.</td>
</tr>
</tbody>
</table>

Temperatures

<table>
<thead>
<tr>
<th>Status</th>
<th>Text</th>
<th>Value</th>
<th>Current operating status of the boiler. Prepurge, Ignition, Name of the system Type being satisfied, post purge, Warm Weather Shutdown, Trouble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Out1</td>
<td>°F</td>
<td>data</td>
<td>Temperature of the first sensing element of the boiler's heat exchanger outlet sensor</td>
</tr>
<tr>
<td>Boiler Out2</td>
<td>°F</td>
<td>data</td>
<td>Temperature of the second sensing element of the boiler's heat exchanger outlet sensor</td>
</tr>
<tr>
<td>Boiler In1</td>
<td>°F</td>
<td>data</td>
<td>Temperature of the boiler's heat exchanger inlet sensor</td>
</tr>
<tr>
<td>Flue1</td>
<td>°F</td>
<td>data</td>
<td>Temperature of the first sensing element of the boiler's flue gas sensor</td>
</tr>
<tr>
<td>Flue2</td>
<td>°F</td>
<td>data</td>
<td>Temperature of the second sensing element of the boiler's flue gas sensor</td>
</tr>
<tr>
<td>Outdoor</td>
<td>°F</td>
<td>data</td>
<td>Temperature of the remote outdoor air temperature sensor</td>
</tr>
<tr>
<td>CWH Tank Top</td>
<td>°F</td>
<td>data</td>
<td>Temperature at the top of the CHW tank</td>
</tr>
<tr>
<td>CWH Tank Blm</td>
<td>°F</td>
<td>data</td>
<td>Temperature at the bottom of the CHW tank</td>
</tr>
</tbody>
</table>

Inputs

<table>
<thead>
<tr>
<th>Status</th>
<th>Text</th>
<th>Value</th>
<th>Current operating status of the boiler. Prepurge, Ignition, Name of the system Type being satisfied, post purge, Warm Weather Shutdown, Trouble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1</td>
<td>on-off</td>
<td>data</td>
<td>Call for heat status on Zone 1 Input (DHW input if DHW active)</td>
</tr>
<tr>
<td>Input 2</td>
<td>on-off</td>
<td>data</td>
<td>Call for heat status on Zone 2 Input</td>
</tr>
<tr>
<td>Input 3</td>
<td>on-off</td>
<td>data</td>
<td>Call for heat status on Zone 3 Input</td>
</tr>
<tr>
<td>Manual Limit</td>
<td>open-closed</td>
<td>data</td>
<td>External manual limit on low voltage terminal strip</td>
</tr>
<tr>
<td>Auto Limit</td>
<td>open-closed</td>
<td>data</td>
<td>External auto limit on low voltage terminal strip</td>
</tr>
<tr>
<td>Low Wtr Cutoff</td>
<td>open-closed</td>
<td>data</td>
<td>Low water cutoff device (inside boiler jacket)</td>
</tr>
<tr>
<td>Blower Tach</td>
<td>rpm</td>
<td>data</td>
<td>Feedback from blower sensor</td>
</tr>
<tr>
<td>Flame Signal</td>
<td>no units</td>
<td>data</td>
<td>Number indicating the presence and quality of the flame used to shutdown boiler</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Status</th>
<th>Text</th>
<th>Value</th>
<th>Current operating status of the boiler. Prepurge, Ignition, Name of the system Type being satisfied, post purge, Warm Weather Shutdown, Trouble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Valve</td>
<td>on-off</td>
<td>data</td>
<td>Control's gas valve circuit status</td>
</tr>
<tr>
<td>Boiler circulator</td>
<td>volts</td>
<td>data</td>
<td>Control's variable voltage sent to control the boiler circulator speed — 0V = OFF / 10V = 100% = High speed</td>
</tr>
<tr>
<td>Circulator 1</td>
<td>on-off</td>
<td>data</td>
<td>Control's circulator 1 relay status</td>
</tr>
<tr>
<td>Circulator 2</td>
<td>on-off</td>
<td>data</td>
<td>Control's circulator 2 relay status</td>
</tr>
<tr>
<td>Circulator 3</td>
<td>on-off</td>
<td>data</td>
<td>Control's circulator 3 relay status</td>
</tr>
<tr>
<td>Blower Signal</td>
<td>% of rate</td>
<td>data</td>
<td>Control's signal controlling the blower speed</td>
</tr>
<tr>
<td>Alarm</td>
<td>on-off</td>
<td>data</td>
<td>Control's alarm contact status</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Control Fault</th>
<th>#</th>
<th>Value</th>
<th>Displays number of control faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition Retries</td>
<td>#</td>
<td>Value</td>
<td>Displays number of ignition attempts boiler is currently on</td>
</tr>
<tr>
<td>Manual Reset Ctrl</td>
<td>#</td>
<td>Value</td>
<td>Displays number of manual reset lockouts since last cleared</td>
</tr>
<tr>
<td>Auto Reset Ctrl</td>
<td>#</td>
<td>Value</td>
<td>Displays number of auto reset lockouts since last cleared</td>
</tr>
</tbody>
</table>

Lockout History 1

Time & Date	text	Value	Displays time and date that lockout occurred
Status	text	Value	Displays what the status of the boiler at the time of the error
Manual Reset	yes or none	Value	Choose this to view the details of manual reset lockouts
Auto Reset	yes or none	Value	Choose this to view the details of auto reset lockouts

Inputs

<table>
<thead>
<tr>
<th>Value</th>
<th>Choose this to view the status of the Boiler Inputs at the time of the error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td>Choose this to view the status of the Boiler Outputs at the time of the error</td>
</tr>
<tr>
<td>Temperatures</td>
<td>Choose this to view the Boiler Temperatures at the time of the error</td>
</tr>
</tbody>
</table>
DIAGNOSTICS menu (continued)

Figure 95 DIAGNOSTICS menu details (continued) (see Figure 93, page 83 for access information)

<table>
<thead>
<tr>
<th>Menu/Item</th>
<th>Units</th>
<th>Low Value</th>
<th>High Value</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO RESET ALL HISTORY COUNTERS TO ZERO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>To reset all history counters to zero: Enter the DIAGNOSTICS menu. Then press and hold the left and right arrows located below the control display. Hold for 5 seconds. This will cause ALL history to be deleted. To maintain history, reset counters individually.</td>
</tr>
<tr>
<td>Lockout History 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choose this to view the second most recent error recorded</td>
</tr>
<tr>
<td>Time & Date</td>
<td>text</td>
<td>data</td>
<td></td>
<td></td>
<td>Displays time and date that lockout occurred</td>
</tr>
<tr>
<td>Status</td>
<td>text</td>
<td>data</td>
<td></td>
<td></td>
<td>Displays what the status of the boiler at the time of the error</td>
</tr>
<tr>
<td>Manual Reset</td>
<td>yes or none</td>
<td>data</td>
<td></td>
<td></td>
<td>Choose this to view the details of manual reset lockouts</td>
</tr>
<tr>
<td>Auto Reset</td>
<td>yes or none</td>
<td>data</td>
<td></td>
<td></td>
<td>Choose this to view the details of auto reset lockouts</td>
</tr>
<tr>
<td>Inputs</td>
<td>menu</td>
<td>menu</td>
<td></td>
<td></td>
<td>Choose this to view the status of the Boiler Inputs at the time of the error</td>
</tr>
<tr>
<td>Outputs</td>
<td>menu</td>
<td>menu</td>
<td></td>
<td></td>
<td>Choose this to view the status of the Boiler Outputs at the time of the error</td>
</tr>
<tr>
<td>Temperatures</td>
<td>menu</td>
<td>menu</td>
<td></td>
<td></td>
<td>Choose this to view the Boiler Temperatures at the time of the error</td>
</tr>
<tr>
<td>Lockout History 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choose this to view the third most recent error recorded</td>
</tr>
<tr>
<td>Time & Date</td>
<td>text</td>
<td>data</td>
<td></td>
<td></td>
<td>Displays time and date that lockout occurred</td>
</tr>
<tr>
<td>Status</td>
<td>text</td>
<td>data</td>
<td></td>
<td></td>
<td>Displays what the status of the boiler at the time of the error</td>
</tr>
<tr>
<td>Manual Reset</td>
<td>yes or none</td>
<td>data</td>
<td></td>
<td></td>
<td>Choose this to view the details of manual reset lockouts</td>
</tr>
<tr>
<td>Auto Reset</td>
<td>yes or none</td>
<td>data</td>
<td></td>
<td></td>
<td>Choose this to view the details of auto reset lockouts</td>
</tr>
<tr>
<td>Inputs</td>
<td>menu</td>
<td>menu</td>
<td></td>
<td></td>
<td>Choose this to view the status of the Boiler Inputs at the time of the error</td>
</tr>
<tr>
<td>Outputs</td>
<td>menu</td>
<td>menu</td>
<td></td>
<td></td>
<td>Choose this to view the status of the Boiler Outputs at the time of the error</td>
</tr>
<tr>
<td>Temperatures</td>
<td>menu</td>
<td>menu</td>
<td></td>
<td></td>
<td>Choose this to view the Boiler Temperatures at the time of the error</td>
</tr>
<tr>
<td>Software Versions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>W.# #</td>
<td>data</td>
<td></td>
<td></td>
<td>Software version of the microprocessor on the display circuit board</td>
</tr>
<tr>
<td>Main Micro</td>
<td>W.# #</td>
<td>data</td>
<td></td>
<td></td>
<td>Software version of the main microprocessor on the control circuit board</td>
</tr>
<tr>
<td>Second Micro</td>
<td>W.# #</td>
<td>data</td>
<td></td>
<td></td>
<td>Software version of the second microprocessor on the control circuit board</td>
</tr>
<tr>
<td>Manual Test Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>text</td>
<td>data</td>
<td></td>
<td></td>
<td>Current operating status of the boiler. Prepurge, Ignition, Name of the system Type being satisfied, post purge, Warm Weather Shutdown, Trouble</td>
</tr>
<tr>
<td>Target</td>
<td>°F</td>
<td>data</td>
<td></td>
<td></td>
<td>Calculated target temperature based on outdoor temp or the max setpoint if no ODR</td>
</tr>
<tr>
<td>Modulation</td>
<td>°F</td>
<td>data</td>
<td></td>
<td></td>
<td>Temperature of the sensor the boiler is using to base its modulation</td>
</tr>
<tr>
<td>Boiler Out</td>
<td>°F</td>
<td>data</td>
<td></td>
<td></td>
<td>Temperature of the outlet sensor on the boiler heat exchanger</td>
</tr>
<tr>
<td>Boiler In</td>
<td>°F</td>
<td>data</td>
<td></td>
<td></td>
<td>Temperature of the inlet sensor on the boiler heat exchanger</td>
</tr>
<tr>
<td>Flue</td>
<td>°F</td>
<td>data</td>
<td></td>
<td></td>
<td>Temperature of flue gases</td>
</tr>
<tr>
<td>Outdoor</td>
<td>°F</td>
<td>data</td>
<td></td>
<td></td>
<td>Temperature of outdoor air</td>
</tr>
<tr>
<td>Blower Tach</td>
<td>rpm</td>
<td>data</td>
<td></td>
<td></td>
<td>Blower's feedback to the control</td>
</tr>
<tr>
<td>Force Rate</td>
<td>Low, Med, High, or Auto</td>
<td>Auto</td>
<td></td>
<td></td>
<td>Used to manually force a rate during a call for heat. Choose auto for normal operation.</td>
</tr>
<tr>
<td>Manual Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reset selected condition</td>
</tr>
</tbody>
</table>
MAINTENANCE, DATE AND TIME menus

Figure 96 MAINTENANCE, DATE AND TIME menus — navigation (see Figure 84, page 74 for access information)

<table>
<thead>
<tr>
<th>MAINTENANCE INFO</th>
<th>NAME</th>
<th>PHONE</th>
<th>MODEL</th>
<th>CP#</th>
<th>INSTALLED</th>
<th>LAST DATE</th>
<th>NEXT DATE</th>
<th>INTERVAL SETTINGS</th>
<th>RESET REMINDER</th>
<th>SET DATE AND TIME</th>
<th>SET YR/MN/DAY/HR/MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 97 MAINTENANCE, DATE AND TIME menus — details (see Figure 96 for access information)

<table>
<thead>
<tr>
<th>Maintenance Info</th>
<th>Name</th>
<th>text</th>
<th>blank</th>
<th>Contractor name to appear in maintenance reminders and during lockouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>text</td>
<td>blank</td>
<td>Contractor phone number</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>text</td>
<td>blank</td>
<td>Displays the boiler model selected in the boiler setup</td>
<td></td>
</tr>
<tr>
<td>CP Number</td>
<td>text</td>
<td>blank</td>
<td>Enter the CP# of the boiler</td>
<td></td>
</tr>
<tr>
<td>Installed</td>
<td>text</td>
<td>blank</td>
<td>Enter the date the boiler was installed</td>
<td></td>
</tr>
<tr>
<td>Last Date</td>
<td>text</td>
<td>data</td>
<td>Date automatically entered when Reset Reminder is chosen by contractor</td>
<td></td>
</tr>
<tr>
<td>Next Date</td>
<td>text</td>
<td>data</td>
<td>Date automatically calculated when Reset Reminder is selected by contractor</td>
<td></td>
</tr>
<tr>
<td>Interval Settings</td>
<td>months</td>
<td>6</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Reset Reminder</td>
<td>menu</td>
<td>menu</td>
<td>Contractor selects this to update Last maintenance Date and Next Date. Homeowner uses this to ignore the reminder and update only the Next Date.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set Time and Date</th>
<th>Year</th>
<th>text</th>
<th>2011</th>
<th>Set year (homeowner or contractor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>text</td>
<td>1</td>
<td>Set month (homeowner or contractor)</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>text</td>
<td>1</td>
<td>Set day (homeowner or contractor)</td>
<td></td>
</tr>
<tr>
<td>Hour</td>
<td>text</td>
<td>12</td>
<td>Set hour (homeowner or contractor)</td>
<td></td>
</tr>
<tr>
<td>Minute</td>
<td>text</td>
<td>0</td>
<td>Set minute (homeowner or contractor)</td>
<td></td>
</tr>
</tbody>
</table>

MAINTENANCE INFO

1. Use this section to enter contractor’s information and to enter an automatic notice for maintenance (default is 12 months). Because this shows on the display, it is an automatic means of notifying the homeowner of need for scheduled maintenance by the technician. Update the screen reminder to reset for the next maintenance date.
Startup — fill the system

Clean system to remove sediment
1. You must thoroughly flush the system (without boiler connected) to remove sediment. The high-efficiency heat exchanger can be damaged by buildup or corrosion due to sediment.

 WARNING If the system needs to be cleaned, use only Sentinel X400 cleaner, available from Weil-McLain. See Figure 123, page 119 for information. Follow instructions supplied with the X400 cleaner.

2. For zoned systems, flush each zone separately through a purge valve. (If purge valves and isolation valves are not already installed, install them to properly clean the system.)

3. Flush system until water runs clean and you are sure piping is free of sediment.

 WARNING Do not use petroleum-based cleaning or sealer compounds in boiler system. Damage to elastomeric seals and gaskets in system could occur, resulting in substantial property damage.

 Before filling the boiler and system with water, verify the following. Boiler corrosion can occur.

 Failure to comply could result in boiler failure or unreliable operation.

Water chemistry

Water pH between 7.0 and 8.5
1. Maintain boiler water pH between 7.0 and 8.5. Check with litmus paper or have chemically analyzed by water treatment company.

2. If pH differs from above, consult local water treatment company for treatment needed.

Hardness less than 7 grains
1. Consult local water treatment companies for unusually hard water areas (above 7 grain hardness).

Chloride concentration must be LESS THAN 200 ppm
1. Filling with chlorinated fresh water should be acceptable since drinking water chloride levels are typically less than 5 ppm.

2. Do not use the boiler to directly heat swimming pool or spa water.

3. Do not fill boiler or operate with water containing chloride in excess of 200 ppm.

 WARNING Verify that the water chemistry meets the limitations and requirements of all other equipment in the system.

Antifreeze
1. Use only antifreeze listed by Weil-McLain as suitable for use with WM97+ Gas Boilers. See Figure 123, page 119 for information.

2. See Replacement parts at the end of this manual for Weil-McLain part numbers to obtain antifreeze through a Weil-McLain distributor.

 Use the correct amount of antifreeze
1. Determine the freezing temperature needed (to protect against lowest likely temperature the system water will encounter).

2. Find the antifreeze concentration by volume needed for this temperature from the antifreeze manufacturer’s data on the antifreeze container.

3. Add up the volume (gallons) of all system piping and components, including the expansion tank and boiler.
 a. Boiler water content is listed in Figure 137, page 133.
 b. Remember to include expansion tank water content.

4. Multiply this volume by the (percent) antifreeze needed to find the number of gallons of antifreeze to add.

Fill and test water system
1. Fill system only after ensuring the water meets the requirements of this manual.

2. Close manual and automatic air vents and boiler drain valve.

3. Fill to correct system pressure. Correct pressure will vary with each application.
 a. Typical cold water fill pressure for a residential system is 12 psi.
 b. Pressure will rise when boiler is turned on and system water temperature increases. Operating pressure must never exceed 25 PSIG.

4. At initial fill and during boiler startup and testing, check system thoroughly for any leaks. Repair all leaks before proceeding further.

 WARNING Eliminate all system leaks. Continual fresh make-up water will reduce boiler life. Minerals can build up in the heat exchanger, reducing heat transfer, overheating heat exchanger, and causing heat exchanger failure.

Purge air from water system
1. Connect a hose to the purge valve (see purge/drain valves, item 11, in piping diagrams beginning on page 44). Route hose to an area where water can drain and be seen.

2. Close the boiler or system isolation valve between the purge valve and fill connection to the system.

3. Close zone isolation valves.

4. Open quick-fill valve on cold water make-up line.

5. Open purge valve.

6. One zone at a time, open the isolation valves. Allow water to run through the zone, pushing out the air. Run until no noticeable air flow is present. Close the zone isolation valves.
Startup — fill the system (continued)

Freeze protection (if used)

Follow these guidelines to prevent possibility of severe personal injury, death or substantial property damage:

Use only the products listed by Weil-McLain for use with this boiler. See page 119 for information.

Thoroughly flush any system that has used glycol before installing the new WM97+ boiler.

Review the material safety data sheets (MSDS) are available online. The MSDS contains information on potential hazards and first aid procedures for exposure or ingestion.

Check antifreeze inhibitor level at least annually. Glycol concentration and inhibitor levels may change over time. Add antifreeze to increase concentration if necessary. Add inhibitor as needed to bring to acceptable level, using inhibitor test kit to verify.

In addition to antifreeze and inhibitor, use and maintain minimum level of Sentinel X100 inhibitor as directed on this page.

If using freeze protection fluid with automatic fill, install a water meter to monitor water make-up. Freeze protection fluid may leak before the water begins to leak, causing concentration to drop, reducing the freeze protection level.

DO NOT exceed 50% antifreeze by volume. Antifreeze moves more sluggishly than water and can interfere with heat transfer. At antifreeze concentrations higher than 50%, sludge can develop in the boiler, potentially causing damage to the heat exchanger.

Clean the system before filling. Always drain and flush the system thoroughly before filling with antifreeze. Sludge, iron oxide deposits and other sediment in the system inhibit flow and can cause rapid breakdown of inhibitors.

Use only antifreeze recommended by Weil-McLain.

Weil-McLain provides information for application of the antifreeze products listed in this document only for use in Weil-McLain WM97+ boilers. Do not apply these products or instructions for other applications. Local codes may require a backflow preventer or actual disconnection from city water supply.

and proceed with the next zone. Follow this procedure until all zones are purged. Follow the same procedure to purge air from the boiler and its internal piping.

7. Close the quick-fill water valve and purge valve and remove the hose. Open all isolation valves. Watch that system pressure rises to correct cold-fill pressure.

8. After the system has operated for a while, eliminate any residual air by using the manual air vents located throughout the system.

9. If purge valves are not installed in system, open manual air vents in system one at a time, beginning with lowest floor. Close vent when water squirts out. Repeat with remaining vents.

10. Open automatic air vent (diaphragm-type or bladder-type expansion tank systems only) one turn.

11. Starting on the lowest floor, open air vents one at a time until water squirts out.

12. Repeat with remaining vents.

13. Refill to correct pressure.

Use X100 inhibitor supplied with boiler

1. The WM97+ boiler is shipped with Sentinel X100 inhibitor and Sentinel X100 Quick Test Kit. See Repair Parts at the end of this manual for re-ordering information.

2. After filling the system as directed in these instructions, use a caulking gun to inject the X100 inhibitor into the system, following the instructions on the tube.

3. Inject all of the inhibitor supplied with the boiler. Allow time for the water to circulate and mix. Then check the inhibitor level. Add additional inhibitor if necessary.

Check/verify water chemistry

1. The system may have residual substances that could affect water chemistry.

2. After the system has been filled and leak tested, verify water pH and chloride concentrations are acceptable.

3. Verify antifreeze concentration, if used.

4. Follow the instructions on the Sentinel test kit to sample the system water and verify inhibitor concentration.

Check inhibitor concentration annually

1. Test the pH of a sample of system water at least annually. The pH of the water mixture must be between 7.0 and 8.5. (Or use the Sentinel inhibitor test kit to check concentration.)

2. If pH is outside this range (or inhibitor test kit indicates low level), the inhibitor level may not be sufficient to prevent corrosion.

3. Test antifreeze concentration.

Test antifreeze concentration at least annually. If concentration is low, add antifreeze or drain system and refill with correct mixture.

4. Follow instructions on antifreeze container to determine the amount of antifreeze needed. DO NOT exceed 50% by volume concentration of antifreeze.

5. Check inhibitor level after adjustments are made.
Startup — final checks

WARNING Check for gas leaks

Before starting the boiler, and during initial operation, use a leak detector or smell near the floor and around the boiler for gas odorant or any unusual odor. Remove boiler front door and smell the interior of the boiler jacket. **Do not proceed with startup if there is any indication of a gas leak. Repair any leak at once.**

DO NOT adjust or attempt to measure gas valve outlet pressure. The gas valve is factory-set for the correct outlet pressure. This setting is suitable for natural gas and propane, requiring no field adjustment. Attempting to alter or measure the gas valve outlet pressure could result in damage to the valve, causing potential severe personal injury, death or substantial property damage.

Propane boilers only — Your propane supplier mixes an odorant with the propane to make its presence detectable. In some instances, the odorant can fade, and the gas may no longer have an odor. Before startup (and periodically thereafter), have the propane supplier verify the correct odorant level in the gas.

Check thermostat circuits

1. Disconnect wires connected to the Zone 1, Zone 2 and Zone 3 thermostat terminals (see Field wiring, beginning on page 66 for low voltage terminal locations and application information). Mark the wires before removing to avoid wiring errors when re-connecting them.

2. Connect a voltmeter across each pair of incoming wires. Close each thermostat, zone valve and relay in the external circuits one at a time and check the voltmeter reading across the incoming wires.

3. **There should NEVER be a voltage reading.**

4. If a voltage does occur under any condition, check and correct the external wiring.

WARNING **DO NOT connect the WM97+ thermostat terminals to 3-wire zone valves.** This could cause WM97+ control damage.

5. Once the external thermostat circuit wiring is checked and corrected if necessary, reconnect the external thermostat circuit wires.

Inspect/fill condensate system

Inspect/check condensate lines and fittings

1. Inspect the condensate drain line, condensate PVC fittings and condensate trap. (See page 62 for component locations.)

Fill condensate trap with water

1. Loosen the top nut that secures the condensate trap body to the boiler condensate connection (see Figure 98). Pull the trap down to disengage from heat exchanger.

Figure 98 Disconnect condensate trap assembly to fill trap body with water

WARNING

The condensate trap must be filled with water during all times of boiler operation to avoid flue gas emission from the condensate drain line. Failure to fill the trap could result in severe personal injury or death.
Startup — final checks (continued)

Final checks before starting boiler

☐ Read the instructions to adjust and set up the WM97+ control.
☐ Verify that the boiler model is set correctly in the WM97+ control, and that it displays correctly.
☐ Verify that the boiler and system are full of water and all system components are correctly set for operation.
☐ Verify that condensate trap is filled with water.
☐ Verify electrical connections are correct and securely attached.
☐ Inspect vent piping and air piping for signs of deterioration from corrosion, physical damage or sagging. Verify air piping and vent piping are intact and correctly installed per this manual.

To start the boiler

1. Turn OFF the boiler ON/OFF switch.
2. Follow the Operating Instructions, Figure 99, page 91.
3. The WM97+ control display will show installed sensors when first powered. Make sure the right sensors are detected and the correct boiler model is identified. If not, determine the cause and correct before proceeding.

If boiler does not start correctly

1. Check for loose connections, blown fuse or service switch off?
2. Are external limit controls (if used) open? Is boiler water temperature above 200 °F?
3. Are thermostats set below room temperature?
4. Is gas turned on at meter and boiler?
5. Is incoming gas pressure less than the minimum values given on page 18?
6. Are WM97+ control settings correct for the application?
7. Is the warm weather shutdown activated?
8. If none of the above corrects the problem, refer to Troubleshooting, beginning on page 102.

☐ Check system and boiler

☐ Check water piping
1. Check system piping for leaks. If found, shut down boiler and repair immediately. (See WARNING on page 87 regarding failure to repair leaks.)
2. Vent any remaining air from system using manual vents. Air in the system will interfere with circulation and cause heat distribution problems and noise.

☐ Check vent piping and air piping
1. Check for gas-tight seal at every connection and seam of air piping and vent piping.

WARNING Venting system must be sealed gas-tight to prevent flue gas spillage and carbon monoxide emissions which will result in severe personal injury or death.

☐ Check gas piping
1. Check around the boiler and inside the boiler jacket for gas odor following the procedure of page 63 of this manual.

WARNING If you discover evidence of any gas leak, shut down the boiler at once. Find the leak source with bubble test and repair immediately. Do not start boiler again until corrected. Failure to comply could result in severe personal injury, death or substantial property damage.

☐ Propane boilers — verify conversion
1. Verify boiler has been converted for propane. See page 14 for WM97+70 or 110 or page 16 for WM97+155.

WARNING DO NOT attempt to measure gas valve outlet pressure

DO NOT adjust or attempt to measure gas valve outlet pressure. The gas valve is factory-set for the correct outlet pressure. This setting is suitable for natural gas and propane, requiring no field adjustment.

Attempting to alter or measure the gas valve outlet pressure could result in damage to the valve, causing potential severe personal injury, death or substantial property damage.

WM97+ boilers are shipped ready to fire natural gas ONLY.

Failure to comply could result in severe personal injury, death or substantial property damage.

☐ Check flame & combustion with instruments
1. Initiate a call for heat on one of the thermostat inputs.
2. Access the WM97+ control installer menus by pressing and holding the UP and DOWN arrow keys for seven seconds.
3. See Figure 89, page 79. Make sure the Max firing rate is set to the maximum given in the table. If not, adjust as necessary. Then navigate to DIAGNOSTICS — Manual test mode (see Figure 93, page 83) and force the firing rate to MAX (high fire).
4. Look at the flame through the flame inspection window. The high fire flame should be blue and should be stable. The burner surface should be covered with orange dots.
5. Insert combustion analyzer probe — Remove the flue temperature sensor from the flue pipe and insert a combustion test probe.
6. Test for CO₂ (or O₂) and for CO. The CO₂ values must comply with Figure 101, page 93. If results are acceptable, proceed to step 7. IF NOT, follow the instructions under “Throttle Screw Adjustment” on page 92 or page 93 to set the throttle screw position. See WARNING on page 92 upper left.

CONTINUED AFTER NEXT PAGE
For your safety — read before operating

WARNING
If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance does not have a pilot. It is equipped with an ignition device which automatically lights the burner. Do not try to light the burner by hand.

B. Before operating, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.

C. Use only your hand to turn the gas control knob. Never use tools. If the knob will not turn by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.

D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

What to do if you smell gas

- Do not try to light any appliance.
- Do not touch any electric switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.

Operating instructions

1. STOP! Read the safety information above on this label. This appliance is equipped with an ignition device which automatically lights the burner. Do not try to light the burner by hand.
2. Set room thermostat(s) to lowest setting.
3. Turn OFF all electrical power to the appliance.
4. Locate boiler manual gas valve (in the gas piping below the boiler).
5. Turn boiler manual gas valve knob counterclockwise to OPEN gas supply.
6. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor.
7. If you smell gas, STOP! Turn the boiler manual gas valve to OFF. Then follow WHAT TO DO IF YOU SMELL GAS, above. If you don’t smell gas, go to step 8, below.
8. Turn ON all electrical power to the appliance.
9. Set thermostat(s) to desired setting.
10. The boiler display will show symbols and/or text describing the status of the boiler as it proceeds through its operating sequence. “Standby” status means the burner is off.
11. If the appliance will not operate when there is a call for heat and piping is not hot, follow the instructions “To turn off gas to appliance” below and call your service technician or gas supplier.

TO TURN OFF GAS TO THE APPLIANCE

1. Set room thermostats to lowest setting.
2. Turn OFF all electrical power to the appliance.
3. Turn boiler manual gas valve knob clockwise to close gas supply.

Gas valve CLOSED

Gas valve OPEN
If combustion at either high or low fire is outside the range given in Figure 101, follow the procedure given on page 92 or page 93 for adjusting the throttle screw on the venturi. If throttle screw adjustment does not correct the problem, then shut down the boiler and contact your local Weil-McLain representative. Throttle screw adjustment must be done only by a qualified technician, using calibrated test instruments. Failure to comply could result in severe personal injury, death or substantial property damage.

7. Measure natural gas input:
 a. Operate boiler 10 minutes. Turn off other appliances.
 b. At natural gas meter, measure time (in seconds) required to use one cubic foot of gas.
 c. Calculate gas input:
 \[
 \text{number of seconds from step b} \times \frac{3600 \times 1000}{\text{Btu}}
 \]
 d. Btu calculated should approximate input rating on boiler rating label.

8. Use the WM97+ control display to navigate to Manual test mode (see Figure 93, page 83) and force the firing rate to MIN (low fire).

9. Look at the flame through the flame inspection window. The low fire flame should be stable and evenly distributed over burner surface with a uniform orange color.

10. Repeat the combustion test as instructed in the previous steps.

11. Use the WM97+ control display to navigate to Manual test mode (see Figure 93, page 83) and force the firing rate to AUTO (normal operation).

12. Reinstall the flue gas temperature sensor. When replacing the sensor, remove the rubber grommet from the probe. Insert the rubber grommet into the flue pipe, then insert the probe into the rubber grommet.

You must reinstall the flue gas temperature sensor to prevent flue gas spillage into the boiler enclosure. Failure to comply could result in severe personal injury, death or substantial property damage.

Throttle screw adjustment

WM97+70 or 110 ONLY

WARNING DO NOT attempt to adjust the throttle screw unless by a qualified technician, and with the use of calibrated combustion test instruments. Adjust the throttle screw only as needed to meet the combustion values given in Figure 101.

1. Throttle screw adjustment is *only necessary* if specified elsewhere in this manual or if combustion tests indicate the need, as explained under "Check flame & combustion with instruments," page 90.

2. Boiler behavior that might indicate a need to check combustion values at high fire (as per page 90) to verify boiler is in adjustment include: difficulty igniting, poor flame stability at low fire, combustion noise or high carbon monoxide values.

3. Combustion readings must be taken at both high fire and low fire. DO NOT attempt an adjustment of the throttle screw at low fire. Just check the combustion values.

4. See Figure 100 for location of the WM97+70 or 110 throttle screw. Remove the cover screw to access the throttle adjustment screw.

Figure 100 WM97+70/110 Throttle screw (ONLY for use by a qualified technician, using calibrated combustion test instruments)

Gas inlet pressure test port

Throttle adjustment screw

CAUTION Adjust the throttle screw in small movements. Turning the screw too far will cause the adjustment to reverse behavior.

5. See Figure 89, page 79. Make sure the Max firing rate is set to the maximum given in the table. If not, adjust as necessary. Then navigate to DIAGNOSTICS — Manual test mode (see Figure 93, page 83) and force the firing rate to MAX (high fire). After the boiler has had time to stabilize, take a CO₂ reading. If result is not acceptable, do the following:
 a. Turn the throttle screw either direction very slightly. Allow the boiler to stabilize and take another CO₂ reading. Note whether CO₂ increases or decreases.
 b. Turn the screw slightly in the direction needed to increase or decrease reading as needed. Allow the boiler to stabilize and take another reading. Continue until CO₂ is acceptable.

6. Lock the boiler into low fire. Check the combustion readings. If results are acceptable at low fire, verify high fire readings again. Restore firing rate to AUTO. DO NOT adjust throttle on low fire.

7. Consult your local Weil-McLain representative if acceptable results cannot be obtained for both high and low fire.
Startup — final checks (continued)

Throttle screw adjustment
WM97+155 ONLY

WARNING DO NOT attempt to adjust the throttle screw unless by a qualified technician, and with the use of calibrated combustion test instruments. Adjust the throttle screw only as needed to meet the combustion values given in Figure 101.

1. Throttle screw adjustment is **only necessary** when specified elsewhere in this manual or when combustion tests indicate the need, as explained under “Check flame & combustion with instruments,” page 90.

2. Boiler behavior that might indicate a need to check combustion values at high fire (as per page 90) to verify boiler is in adjustment include: difficulty igniting, poor flame stability at low fire, combustion noise or high carbon monoxide values.

3. Combustion readings must be taken at both high fire and low fire. DO NOT attempt an adjustment of the throttle screw at low fire. Just check the combustion values.

4. See Figure 102 for location of the WM97+155 throttle screw.

Figure 102 WM97+155 Throttle screw (ONLY for use by a qualified technician, using calibrated combustion test instruments)

CAUTION Adjust the throttle screw in small movements.

5. See Figure 89, page 79. Make sure the Max firing rate is set to the maximum given in the table. If not, adjust as necessary. Then navigate to DIAGNÓSTIC — Manual test mode (see Figure 93, page 83) and force the firing rate to MAX (high fire). After the boiler has had time to stabilize, take a CO$_2$ reading.
 a. If the CO$_2$ is HIGH, turn the throttle screw CLOCKWISE to lower the input. Allow the boiler to stabilize and take another reading. Continue until the desired CO$_2$ value is achieved.
 b. If the CO$_2$ is LOW, turn the throttle screw COUNTERCLOCKWISE to increase the input. Allow the boiler to stabilize and take another reading. Continue until the desired CO$_2$ value is achieved.

6. Lock the boiler into low fire. Check the combustion readings. If results are acceptable at low fire, verify high fire readings again. Restore firing rate to AUTO. DO NOT adjust throttle on low fire.

7. Consult your local Weil-McLain representative if acceptable results cannot be obtained for both high and low fire.

Figure 101 Acceptable combustion values — measured values must be within the ranges given below

<table>
<thead>
<tr>
<th>Boiler model</th>
<th>Fuel</th>
<th>High fire</th>
<th>Low fire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% CO$_2$</td>
<td>CO ppm</td>
<td>% CO$_2$</td>
</tr>
<tr>
<td>70</td>
<td>9.25 +/- 1.0</td>
<td>< 150</td>
<td>9.25 +/- 1.0</td>
</tr>
<tr>
<td>110</td>
<td>9.25 +/- 1.0</td>
<td>< 150</td>
<td>10.0 +/- 0.5</td>
</tr>
<tr>
<td>155</td>
<td>9.25 +/- 1.0</td>
<td>< 150</td>
<td>8.75 +/- 1.0</td>
</tr>
</tbody>
</table>

- Values above are with the boiler front door removed. Values will increase about 0.2% once the door is reinstalled.
- REINSTALL the boiler door after completing service.
- Values above are for altitudes up to 5,500 feet. For higher altitudes, CO$_2$ may be slightly lower and CO slightly higher.

Check exchanger and vent seals

1. Operate the boiler on HIGH fire.

2. Using an inspection mirror, move the mirror around all heat exchanger joints and vent pipe connections at the top of the boiler and at the connection to the condensate dish.

3. A leak would appear as vapor on the surface of the mirror.

4. If there is any indication of a leak at any joint, immediately shut down the boiler.
 a. If possible, tighten the retaining screws or nuts (without over-tightening).
 b. If this does not correct the problem, disassemble the components where the leak appeared. Use the procedures given in the Maintenance section of this manual.
 c. When disassembling components, inspect gaskets to see if there is damage. Replace any damaged gasket.
 d. Contact your Weil-McLain representative if the problem cannot be addressed with the information provided in this manual.

5. Condensate dish joint
 a. If the inspection mirror check shows a leak at the condensate dish-to-heat exchanger joint, contact your Weil-McLain representative for instructions to correct the problem.
 b. If the mirror test does not reveal a leak at the condensate dish joint, but there are signs of weepage or other indications that there might be leakage, follow the procedure for checking the heat exchanger-to-condensate dish seal on page 111.
Check-out/startup verification

Adjust and test boiler controls

1. Follow instructions in this manual to set and verify operation of the boiler controls.
2. Follow low water cutoff manufacturers instructions.
3. If a Aqua Logic Water Heater is installed with the WM97+, verify that the mixing valve is installed and functional. Follow all instructions in the Aqua Logic (CWH) manual.

Have the following been done?

- WM97+ control set for the correct boiler model?
- Installation date and installer contact information entered into WM97+ control?
- Boiler and heat distribution units filled with water?
- Water chemistry verified per page 87?
- Sentinel X100 corrosion inhibitor added and water tested to be within range?
- Automatic air vents, if used, opened one full turn?
- Air purged from system?
- Air purged from gas piping? Piping checked for leaks?
- Condensate trap primed?
- Propane orifice bushing installed for propane firing and propane conversion label affixed to jacket?

WARNING WM97+ boilers are shipped ready to fire natural gas ONLY. To fire on propane, you must follow the instructions in this manual to install the propane orifice bushing. See page 14 for WM97+70 or 110 or page 16 for WM97+155. Failure to comply could result in severe personal injury, death or substantial property damage.

- Thermostat circuit wiring checked to ensure there are no stray voltages?
- Followed Operating Instructions, Figure 99, page 91?
- Burner flame and combustion verified per page 90?
- WM97+ control operation for space heating and DHW (if used) verified per this manual?
- Additional field-installed controls tested as outlined by control manufacturers! (Boiler should be operating and should go off when controls are tested. Verify controls cause automatic reset lockout or manual reset lockout as desired.)
- Additional field-installed limit control(s) set to system temperature requirements? Balancing valves and controls adjusted to provide design temperature to system?
- Flow adjusted/balanced for each zone of multiple zones systems?
- Thermostat heat anticipator (if available) set properly?
- Boiler cycled with thermostats (and with DHW aquastat, if installed) — Raised to highest setting and verified boiler goes through normal startup cycle? Lowered to lowest setting and verified boiler goes off?
- Natural gas input measured? (page 92)
- Incoming gas pressure checked by connecting manometer to gas valve ahead of boiler? (Gas pressure must be at least the minimum values given on page 18, with boiler operating at high fire, and no more than 13 inches (330 mm) w.c. with boiler operating or boiler off.)
- Observed several operating cycles for proper operation?
- Room thermostats set to desired room temperature (and DHW aquastat, if installed, to desired DHW storage temperature)?
- All instructions shipped with this boiler reviewed with owner or maintenance person?

Before leaving:

- Fill in Installation certificate, page 135.
- Fill out the warranty registration card and send to Weil-McLain.
- Return instructions to envelope and give to owner or place inside boiler housing.

NOTICE Fill out start-up data on the Installation and Service Certificate, page 135.
Annual startup and general maintenance

WARNING Follow the service and maintenance procedures given throughout this manual and in component literature shipped with the boiler. Failure to perform the service and maintenance could result in damage to the boiler or system. Failure to follow the directions in this manual and component literature could result in severe personal injury, death or substantial property damage.

Figure 103 Service and maintenance schedules

<table>
<thead>
<tr>
<th>Service technician</th>
<th>Owner maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(see page numbers indicated for details)</td>
<td>(see WM97+ User's Information Manual)</td>
</tr>
<tr>
<td>• Address reported problems 97</td>
<td>• Check boiler area.</td>
</tr>
<tr>
<td>• Inspect boiler area 97</td>
<td>• Check air openings.</td>
</tr>
<tr>
<td>• Inspect boiler interior & door gaskets 97</td>
<td>• Check pressure/temperature gauge.</td>
</tr>
<tr>
<td>• Clean condensate trap 97</td>
<td>• Verify boiler front door is securely in place.</td>
</tr>
<tr>
<td>• Check all piping for leaks 97</td>
<td></td>
</tr>
<tr>
<td>• Check air openings 98</td>
<td>Daily</td>
</tr>
<tr>
<td>• Flue vent system and air piping 98</td>
<td>• Check vent piping.</td>
</tr>
<tr>
<td>• Check water system 98</td>
<td>• Check air piping.</td>
</tr>
<tr>
<td>• Check expansion tank(s) 98</td>
<td>• Check relief valve.</td>
</tr>
<tr>
<td>• Inspect ignition electrode 98</td>
<td>• Check condensate drain system.</td>
</tr>
<tr>
<td>• Check ignition wiring 99</td>
<td>• Check automatic air vents (if used).</td>
</tr>
<tr>
<td>• Check all boiler wiring 99</td>
<td>• Verify that domestic hot water is being supplied to fixtures at the correct temperature.</td>
</tr>
<tr>
<td>• Check control settings 99</td>
<td></td>
</tr>
<tr>
<td>• Perform startup and checks 99</td>
<td>Monthly</td>
</tr>
<tr>
<td>• Aqua Logic Water Heater installations only — verify operation per Aqua Logic (CWH) manual 99</td>
<td>• Check vent piping.</td>
</tr>
<tr>
<td>• Check low water cutoff service light 99</td>
<td>• Check air piping.</td>
</tr>
<tr>
<td>• Check burner flame 99</td>
<td>• Check relief valve.</td>
</tr>
<tr>
<td>• Check flame signal 99</td>
<td>• Check condensate drain system.</td>
</tr>
<tr>
<td>• Check blower speeds 100</td>
<td>• Check automatic air vents (if used).</td>
</tr>
<tr>
<td>• Check flue gas temperature 100</td>
<td>• Verify that domestic hot water is being supplied to fixtures at the correct temperature.</td>
</tr>
<tr>
<td>• Check boiler relief valve 101</td>
<td></td>
</tr>
<tr>
<td>• Reinstall jacket door after servicing 101</td>
<td>Every 6 months</td>
</tr>
<tr>
<td>• Review with owner 101</td>
<td>• Check boiler piping (gas and water)</td>
</tr>
<tr>
<td></td>
<td>• Operate relief valve.</td>
</tr>
</tbody>
</table>
Annual startup

HANDLING CERAMIC FIBER MATERIALS

REMOVING BURNER GASKET or COVER PLATE INSULATION

⚠ **WARNING** The WM97+ cover plate refractory contain ceramic fiber material.

Ceramic fibers can be converted to cristobalite in very high temperature applications.

The International Agency for Research on Cancer (IARC) has concluded, “Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1).”:

- Avoid breathing dust and contact with skin and eyes.
- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for cristobalite at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH website at http://www.cdc.gov/niosh/homepage.html.
- NIOSH approved respirators, manufacturers, and phone numbers are also listed on this website.
- Wear long-sleeved, loose fitting clothing, gloves, and eye protection.
- Handle carefully to minimize dust that could be caused by abrasion.
- If replacement is necessary, remove the refractory from the boiler and place it in a plastic bag for disposal.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washer thoroughly.

NIOSH stated First Aid

- Eye: Irrigate immediately
- Breathing: Fresh air

FIRST-YEAR SPECIAL INSPECTION

⚠ **NOTICE** It is recommended that you obtain a Weil-McLain WM97+ Boiler Maintenance kit before attempting the first-year inspection, to ensure all parts that may be needed are available. This kit includes a heat exchanger cover plate gasket, burner gasket, new ignitor, and ignitor gasket. See listing in Replacement parts section of this manual. These parts must be on hand when you perform the first-year inspection in the event they must be replaced.

⚠ **WARNING** Failure to replace the items above when needed could result in severe personal injury, death or substantial property damage.

1. **No later than 12 months** after the boiler is installed, perform a first-year inspection of the boiler. This should include the following in addition to routine annual start-up procedures.
 a. Inspect the heat exchanger and clean if necessary (see page 112 (for WM97+70 or 110) or page 115 (for WM97+155) for access and cleaning procedures).
 b. Inspect the cover plate refractory and gasket. Replace if not in good condition.
 c. Inspect the burner and inspect carefully. Clean the burner thoroughly using a vacuum cleaner and compressed air if needed.
 d. Make sure there is no blockage or accumulation of debris in the burner or the burner ports. Replace the burner if necessary.
 e. WM97+70 or 110: Check the burner for tightness. Remove the cover plate refractory and tighten the burner mounting screws if needed, following the instructions on page 112.
 f. WM97+155: Check burner access cover for tightness.
 g. Make sure to follow the inspection procedure given in “Check exchanger and vent seals,” page 93.
 h. Disconnect the condensate trap and drain lines. Inspect, then flush thoroughly. Reinstall and refill the trap per page 89.

2. Determine any follow-up maintenance and service needs based on the condition of the heat exchanger and condensate lines.
 a. If the heat exchanger shows substantial fouling, or if condensate lines show accumulation of sediment, schedule a follow-up service call to perform the first-year inspection again, sooner than the normal twelve months between.
 b. Heavy fouling of the exchanger or condensate lines indicates possible combustion air contamination. Inspect the air intake area carefully, and remove possible contaminants. See page 19, for products to avoid.

⚠ **WARNING** You must eliminate causes of corrosion and contamination to ensure reliable operation of the boiler and system.
Annual startup (continued)

WARNING The boiler should be inspected and started annually, at the beginning of the heating season, only by a qualified service technician. In addition, the maintenance and care of the boiler designated in Figure 103, page 95 and explained on the following pages must be performed to assure maximum boiler efficiency and reliability. Failure to service and maintain the boiler and system could result in equipment failure.

WARNING Electrical shock hazard — Turn off power to the boiler before any service operation on the boiler except as noted otherwise in this instruction manual. Failure to turn off electrical power could result in electrical shock, causing severe personal injury or death.

Address reported problems

1. Inspect any problems reported by owner and correct before proceeding.

Inspect boiler area

1. Verify that boiler area is free of any combustible materials, gasoline and other flammable vapors and liquids.
2. Verify that air intake area is free of any of the contaminants listed on page 19 of this manual. If any of these are present in the boiler intake air vicinity, they must be removed. If they cannot be removed, reinstall the air and vent lines per this manual.

Inspect boiler interior & door gaskets

1. Remove jacket front door and inspect interior of boiler.
2. Visually inspect the door gaskets. Make sure all are in good condition. Obtain replacements if any gasket is damaged.

WARNING Door gaskets must be intact, and must provide a reliable seal. Replace any damaged gasket.

3. Remove the venturi air inlet silencer and clean if necessary. Reinstall silencer.
4. Vacuum any sediment from the inside of the boiler and components. Remove any obstructions.

WARNING Do not use solvents to clean any of the boiler components. The components could be damaged, resulting in unreliable or unsafe operation.

Clean condensate trap

1. See Figure 104.
2. Disconnect top nut that secures the trap body to the boiler condensate connection (see Figure 71, page 62).
3. Remove the cleanout cap and remove the trap internal parts as shown.
4. Clean all trap components.
5. Re-assemble trap assembly. Re-install all lower gasket.
6. Make sure the trap ball moves freely when re-inserted.
7. Fill trap with fresh water by pouring into the top of the trap body. Continue filling slowly until water begins flowing out the condensate drain line. Make sure the trap line is unobstructed and flows freely.
8. Reattach the trap to the boiler condensate outlet. Push the trap up until fully engaged. Then twist the upper nut clockwise to tighten. Check for secure connection.

Check all piping for leaks

WARNING Eliminate all system or boiler leaks. Continual fresh make-up water will reduce boiler life. Minerals can build up in the heat exchanger, reducing heat transfer, overheating heat exchanger, and causing heat exchanger failure. Leaking water may also cause severe property damage.

1. Inspect all water and gas piping and verify to be leak free.
2. Look for signs of leaking lines in the system and in the boiler and correct any problems found.
3. Check gas line using procedure on page 63.
Annual startup (continued)

Check air openings
1. Verify that combustion and ventilation air openings to the boiler room and/or building are open and unobstructed.
2. Check operation and wiring of automatic combustion air dampers, if used.
3. Verify that boiler vent discharge and air intake are clean and free of obstructions.

Flue vent system and air piping
1. Visually inspect entire flue gas venting system and combustion air piping for blockage, deterioration or leakage. Repair any joints that show signs of leakage in accordance with vent manufacturer’s instructions. Verify that air inlet piping is connected and properly sealed.

WARNING Failure to inspect for the above conditions and have them repaired can result in severe personal injury or death.

Check water system
1. Verify all system components are correctly installed and operational.
2. Check the cold fill pressure for the system. Verify it is correct (usually around 12 PSIG).
3. Watch the system pressure as the boiler heats up (during testing) to ensure pressure doesn’t rise too high. Excessive pressure rise indicates expansion tank sizing or performance problem.
5. Check system water chemistry (pH, hardness and inhibitor level). See page 87.

Check expansion tank(s)
1. Expansion tanks provide space for water to move in and out as the heating system water expands due to temperature increase or contracts as the water cools.
2. WM97+155 only — See page 43 for information.
3. WM97+70 and 110 only — The boiler is fitted with an integral diaphragm-type tank (12 liters, 3.2 gallons). The tank is factory charged to 12 PSIG.
 a. Supplementary expansion tanks, if used, may be closed or diaphragm or bladder type. See page 42 of this manual for suggested location of supplementary expansion tanks and air eliminators.
4. Tank types
 • Closed-type — welded gas tight and located above boiler. Tank is partially filled with water, leaving an air cushion for expansion.
 • Make sure a closed-type tank is fitted with a tank fitting, such as the B & G Tank-Trol or Taco Taco-Trol. This fitting reduces gravity circulation of air-saturated tank water back to the system and prevents the air from bubbling up through the water as it returns from the system.
 • Do not use automatic air vents in systems with closed-type tanks. The air will escape from the system instead of returning to the tank.
 • Eventually, the tank will waterlog and no longer control pressurization. The boiler relief valve will weep frequently.
 • Diaphragm- or bladder-type — welded gas tight with a rubber membrane to separate the tank pressurizing air and the water. May be located at any point in the system, but preferably located on the suction side of the system circulator.
 • Systems with this type of expansion tank require at least one automatic air vent, preferably located on top of an air eliminator, as shown in examples in this manual.
5. If relief valve has tended to weep frequently, the expansion tank may be waterlogged or undersized.
 a. WM97+70 or 110 only — If system volume is greater than 15 gallons, a supplementary expansion tank may be needed (see page 42). Check the following.
 • Integral expansion tank in boiler — Check the tank charge pressure by closing the expansion tank isolation valve. Allow the tank to cool off. Isolate the tank by disconnecting from the boiler internal piping. Then check the charge pressure in the tank. It should be 12 PSIG. If necessary, adjust tank pressure.
 b. Diaphragm- or bladder-type expansion tank — first, check tank size to be sure it is large enough for the system. If size is too small, add additional tank (or tanks) as necessary to provide sufficient expansion. If tank size is large enough, remove tank from system and check charge pressure (usually 12 PSIG for residential applications). If tank won’t hold pressure, membrane has been damaged. Replace tank.
 c. Closed-type expansion tank — tank is most likely waterlogged. Install a tank fitting if not already installed. Then check fill level per fitting manufacturer’s instructions. If fill level is correct, check tank size against manufacturer’s instructions. Replace with a larger tank if necessary.

Inspect ignition electrode
1. Remove the ignition electrode from the boiler heat exchanger access cover (see item 26, page 3 or page 5). (Disconnect the ground wire and ignition cable connected to the electrode.)
2. Remove any white oxides accumulated on the ignition electrode using steel wool. If the ignition electrode cannot be cleaned satisfactorily, replace ignitor with a new one.
3. Reinstall ignition electrode, making sure gasket is in good condition and correctly positioned.
 • Do NOT exceed 20 inch-pounds.
4. Re-attach the ground wire to the electrode assembly.
Annual startup (continued)

Check ignition wiring
1. Check ignition cable electrical resistance. A good cable will have resistance between 950 and 1050 ohms. Replace if not acceptable.
2. Inspect boiler ground wire from heat exchanger access cover to ground terminal screw.
3. Verify all wiring is in good condition and securely attached.
4. Check ground continuity of wiring using continuity meter.
5. Replace ground wires if results are not satisfactory.

Check all boiler wiring
1. Inspect all boiler wiring, making sure wires are in good condition and securely attached.
2. Verify that all connectors are securely inserted.

Check control settings
1. Use the WM97+ control display to navigate through all settings. Adjust settings if necessary.
2. Check settings of external limit controls (if any) and adjust if necessary. Adjust as needed to accommodate the system design.

Perform startup and checks
1. Start boiler and perform checks and tests specified in this manual.
2. Verify cold fill pressure is correct and that operating pressure does not go too high. Adjust water pressure and expansion tank charge pressure as necessary.
3. Complete the check-out procedure on page 94.

Aqua Logic (CWH) installations only — verify operation per Aqua Logic (CWH) manual
1. If a Aqua Logic (CWH) is installed, follow instructions in the Aqua Logic (CWH) manual to set and verify operation of the water heater.

Check low water cutoff service light
1. If the low water cutoff amber LED is on, the control requires service. Follow the low water cutoff manufacturer's instructions (shipped with the boiler in the literature envelope).

Check burner flame
WARNING The boiler contains ceramic fiber materials. Use care when handling these materials per instructions on page 96 of this manual. Failure to comply could result in severe personal injury.
1. Inspect flame through observation window using the procedure on page 90.
2. If flame is unsatisfactory at either high fire or low fire, check combustion values. If combustion is properly adjusted, turn off boiler and allow boiler to cool down. Then remove burner and clean it thoroughly using a vacuum cleaner or compressed air. Do not use compressed air to clean burner if performed inside a building.
3. To access the burner, remove the heat exchanger cover plate following the procedure beginning on page 112.
4. If replacing the burner, ensure the burner gasket is in good condition and correctly positioned. Follow all instructions on page 112 to reinstall all components.
5. Restart the boiler.
6. Inspect the flame at high and low fire. If flame is still not acceptable, check combustion values. If combustion is properly adjusted, obtain a replacement burner from Weil-McLain.

Check flame signal
1. Navigate to Diagnostics/Inputs on the WM97+ control display (see Figure 84, page 74 for navigation instructions and Figure 93, page 83 for the complete Diagnostics menus).
2. The flame signal value must be at least 75 for a WM97+70 or 110, or at least 160 for the WM97+155. If the flame signal drops below this level, the WM97+ control will attempt to correct by increasing the boiler firing rate to increase flame signal.

<table>
<thead>
<tr>
<th>Model WM97+</th>
<th>Shutdown flame signal</th>
<th>Model WM97+</th>
<th>Shutdown flame signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>50</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>70 HA</td>
<td>50</td>
<td>155 HA</td>
<td>150</td>
</tr>
<tr>
<td>110</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 HA</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: “HA” means high altitude, 5500 feet or more above seal level.

3. A low flame signal may indicate a fouled ignitor or damaged ignitor insulation.
 a. See “Inspect ignition electrode,” page 98 to remove and inspect the ignitor.
 b. If required, clean the igniter as instructed.
 c. If cleaning the igniter does not improve, ground wiring is in good condition, and ground continuity is satisfactory, replace the ignitor.
4. If flame signal still remains low:
 a. Inspect the vent and air piping.
 b. Check combustion values.
 c. Then inspect the heat exchanger, following the procedures given in this manual for removal and reinstallation of the head exchanger cover plate and other boiler components (see page 112).
 d. Clean the exchanger as described in this manual if necessary.
Annual startup (continued)

Check blower speeds

1. For installations at altitudes above 5,500 feet, make sure the control is set up for high altitude in the boiler setup menu. The WM97+ control automatically adjusts low fire and ignition rates to compensate for high altitude conditions.

2. For installations below 5,500 feet, high altitude should NOT be enabled.

3. Use the WM97+ control display to navigate to DIAGNOSTICS/Manual test mode (see Figure 84, page 74 for navigation instructions and Figure 93, page 83 for the complete Diagnostics menus).

4. Set the firing rate to MINIMUM (low fire).

5. Write down the blower RPM value shown and compare to the value in Figure 106. The value should no less than the “Minimum setting” and no higher than the Ignition “Factory setting” listed. Low fire rate (and corresponding blower speed) is adjusted in the boiler setup menu.

6. Set the firing rate to MEDIUM (ignition rate).

7. Write down the blower RPM value. It should be within 200 RPM of the value listed in Figure 106.

8. Set the firing rate to MAXIMUM (high fire).

9. Write down the blower RPM value. It should be within 200 RPM of the value given in Figure 106.

10. If any of the values are outside the ranges listed in the previous steps, contact the factory for technical assistance.

Minimum and maximum blower speeds can be adjusted within limits, but changing speeds will affect AFUE ratings.

Check flue gas temperature

1. Set the boiler to high fire. Then adjust the WM97+ control display to view flue gas temperature and boiler return temperature.

2. The flue gas temperature should be no more than 50°F higher than the boiler return temperature.

3. If the flue temperature is higher than this, shut down the boiler, allow to cool, and follow the procedure starting on page 112 to clean the heat exchanger.
Annual startup (continued)

Check boiler relief valve

1. Inspect the relief valve and lift the lever to verify flow as in the following warnings, excerpted from a relief valve manufacturer’s warning label. Before operating any relief valve, ensure that it is piped with its discharge in a safe area to avoid severe scald potential.

2. Read page 39 before proceeding further.

3. Follow instructions below or perform procedures per relief valve manufacturer’s printed instructions.

WARNING

Safety relief valves should be reinspected AT LEAST ONCE EVERY THREE YEARS, by a licensed plumbing contractor or authorized inspection agency, to ensure that the product has not been affected by corrosive water conditions and to ensure that the valve and discharge line have not been altered or tampered with illegally. Certain naturally occurring conditions may corrode the valve or its components over time, rendering the valve inoperative. Such conditions are not detectable unless the valve and its components are physically removed and inspected. This inspection must only be conducted by a plumbing contractor or authorized inspection agency — not by the owner. Failure to reinspect the boiler relief valve as directed could result in unsafe pressure buildup, which can result in severe personal injury, death or substantial property damage.

Following installation, the valve lever must be operated AT LEAST ONCE A YEAR to ensure that waterways are clear. Certain naturally occurring mineral deposits may adhere to the valve, rendering it inoperative. When manually operating the lever, water will discharge and precautions must be taken to avoid contact with hot water and to avoid water damage. Before operating lever, check to see that a discharge line is connected to this valve directing the flow of hot water from the valve to a proper place of disposal. Otherwise severe personal injury or property damage may result. If no water flows, valve is inoperative. Shut down boiler until a new relief valve has been installed.

4. After following the above warning directions, if the relief valve weeps or will not seat properly, replace the relief valve. Ensure that the reason for relief valve weeping is the valve and not over-pressurization of the system due to expansion tank waterlogging or under-sizing.

Reinstall jacket door after servicing

WARNING

Reinstall boiler jacket front door after start-up or servicing. The boiler front door must be securely fastened to the boiler to prevent boiler from drawing air from inside the boiler room. This is particularly important if the boiler is located in the same room as other appliances.

Inspect boiler jacket door gaskets. Gaskets must be in good condition, with no tears or gaps. Replace if necessary.

Failure to keep the door securely sealed and fastened could result in severe personal injury or death.

Review with owner

1. Review the User’s Information Manual with the owner.

2. Emphasize the need to perform the maintenance schedule specified in the User’s Information Manual (and in this manual as well).

3. Remind the owner of the need to call a licensed contractor should the boiler or system exhibit any unusual behavior.

4. Remind the owner to follow the proper shutdown procedure and to schedule an annual startup at the beginning of the next heating season.
Troubleshooting

VERIFY PROPER OPERATION AFTER SERVICING

Before calling for troubleshooting assistance, fill in the “WM97+ Gas Data Collection Sheet” (page 136). Record the boiler size and CP number (located on the inside left side of the jacket above the heat exchanger).

WARNING

Failure to adhere to these guidelines can result in severe personal injury, death or substantial property damage.

ELECTRICAL SHOCK HAZARD

The boiler ON/OFF switch does not turn off all power to the boiler. TURN OFF ALL POWER TO THE BOILER WHEN SERVICING. Internal wiring is still powered when the switch is off.

DO NOT JUMPER DEVICES

Never jumper (bypass) any device except for momentary testing.

REINSTALL JACKET DOOR

The boiler front door must be securely fastened to the boiler to prevent boiler from drawing air from inside the boiler room. This is particularly important if the boiler is located in the same room as other appliances. Failure to keep the door securely fastened could result in severe personal injury or death.

BEFORE SERVICING or MAKING CONNECTIONS —

ALWAYS TURN POWER OFF TO THE BOILER TO PREVENT ELECTRICAL SURGES, WHICH CAN DAMAGE BOILER COMPONENTS.

LABEL WIRES BEFORE REMOVING

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation.

BEFORE TROUBLESHOOTING —

1. See Figure 107 for tools and kits recommended for troubleshooting WM97+ boilers.

2. Check for 120 VAC (minimum 102 VAC to maximum 132 VAC) to boiler.

3. Check the WM97+ control’s last three lockout histories. (Navigate to the DIAGNOSTICS menus.)
 a. See see Figure 84, page 74 for navigation instructions and Figure 93, page 83 for the complete Diagnostics menus.
 b. In the DIAGNOSTICS menu, scroll down to ERRORS and press the enter key.
 c. Record the first four data records and then highlight the history record you want to view.
 d. Follow information at the bottom of the screen to navigate through your lockout histories.

Figure 107

<table>
<thead>
<tr>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 Phillips screwdriver</td>
<td>Multiple uses</td>
</tr>
<tr>
<td>10 mm wrench</td>
<td>Remove heat exchanger cover plate</td>
</tr>
<tr>
<td>#20 long-handled Torx</td>
<td>Remove burner screws</td>
</tr>
<tr>
<td>driver</td>
<td></td>
</tr>
<tr>
<td>Multimeter</td>
<td>Measurements on sensors and electrical</td>
</tr>
<tr>
<td></td>
<td>components</td>
</tr>
<tr>
<td>Manometer (Inclined</td>
<td>Measure the INLET gas pressure to the boiler</td>
</tr>
<tr>
<td>or digital)</td>
<td></td>
</tr>
<tr>
<td>Combustion analyzer (</td>
<td>Combustion testing and boiler adjustments</td>
</tr>
<tr>
<td>Digital preferred)</td>
<td></td>
</tr>
<tr>
<td>Contact thermometer</td>
<td>Checking surface temperatures of heat</td>
</tr>
<tr>
<td></td>
<td>exchanger and pipes</td>
</tr>
<tr>
<td>Maintenance kit</td>
<td>ALWAYS have this kit on hand when performing</td>
</tr>
<tr>
<td></td>
<td>maintenance in case replacement is required.</td>
</tr>
</tbody>
</table>

Check the following:

1. Make sure thermostat is calling for heat and contacts (including appropriate zone controls) are closed. Check for 24 VAC between thermostat wire nuts and ground.

2. Make sure all external limit controls are either installed (and closed) or temporarily jumpered for testing.

3. Make sure that connectors to WM97+ control are securely plugged in at module and originating control.

4. Gas pressures:
 - Maximum: 13” (330 mm) w.c. with no flow (gas valve lockup pressure).
 - Minimum: must be no less than the minimum values given on page 18 while operating on high fire.
Troubleshooting (continued)

Check WM97+ control fuses

⚠️ WARNING ⚠️ ALWAYS check WM97+ control fuses before replacing WM97+ control or any major components (blower, etc.). If one of these fuses is blown, it can prevent WM97+ control or other components from operating.

1. Turn OFF power to boiler at external line switch. Then remove the jacket door.

2. Access the WM97+ control fuses.
 a. See Figure 109. Rotate item 1, the inlet air silencer, about 45 degrees so it will be out of the way.
 b. Remove the two screws, item 4.
 c. Note the three slots (1, 2 and 3) on either side of the jacket. Lift the control housing (item 2) until the top support arms are aligned with slot 2, as shown. Pull the top of the housing forward so the upper arms swing free. Continue rotating the control housing until it rests on the jacket lower flange as in Figure 110.
 d. Disconnect the ignition wire (at item 7). Remove the control housing back cover (item 6) by pressing the retainer clips (item 5), then lifting and pulling cover forward.

3. Remove and inspect the two fuses (items 8 and 9, Figure 111).

4. If necessary, replace one or both of the fuses:
 a. Low voltage circuit fuse is 3-amp fast-blow (Littelfuse 326012P).
 b. Line voltage circuit fuse is 12-amp slow-blow (Littelfuse 257003).

⚠️ WARNING ⚠️ Do not jumper either fuse or replace with any fuse except as specified. Failure to comply could result in severe personal injury, death or substantial property damage.

5. Reinstall control housing cover and return control housing to normal position. Replace screws (item 4) and reconnect ignition cable at item 7.

Checking temperature sensors

1. The boiler temperature sensors (flue, outdoor, return water and supply water) are all resistance-type devices. Figure 108 shows the correct value for the sensor at various temperatures. For dual sensors, the temperature difference between the sensors must be no more than 10 °F.

2. Use the resistance values at 32°F, 60°F, 70°F and 212°F to measure the sensor resistance at known temperatures (ice point, room temperature and sea level boiling point). For ice point and boiling point, insert the sensor in water at that temperature. Use an ohmmeter to read resistance value.

3. To check whether the WM97+ control is correctly sensing temperature, you can use a resistance decade box. Connect the decade box temporarily in place of a sensor and read the corresponding temperature on the WM97+ control display. The temperature should be close to the value corresponding to the input resistance.

Figure 108 Sensor resistance values

<table>
<thead>
<tr>
<th>Temp (°F)</th>
<th>Sensor ohms (Min)</th>
<th>Sensor ohms (Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>34265</td>
<td>37871</td>
<td>90</td>
<td>8504</td>
<td>9399</td>
<td>150</td>
<td>2517</td>
<td>2782</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>27834</td>
<td>30764</td>
<td>100</td>
<td>6847</td>
<td>7568</td>
<td>160</td>
<td>2091</td>
<td>2311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>21630</td>
<td>23907</td>
<td>110</td>
<td>5545</td>
<td>6129</td>
<td>170</td>
<td>1744</td>
<td>1928</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>16944</td>
<td>18727</td>
<td>120</td>
<td>4517</td>
<td>4992</td>
<td>180</td>
<td>1461</td>
<td>1615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>13372</td>
<td>14780</td>
<td>130</td>
<td>3698</td>
<td>4088</td>
<td>190</td>
<td>1229</td>
<td>1359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>10629</td>
<td>11747</td>
<td>140</td>
<td>3043</td>
<td>3364</td>
<td>200</td>
<td>1038</td>
<td>1147</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 109 Control housing lifted to slot 2 (jacket door removed and inlet air silencer rotated out of the way) (WM97+70 shown)

Figure 110 Control housing rotated forward (WM97+70 shown)

Figure 111 Control housing with back removed — close-up of WM97+ control fuse location on the control board
Troubleshooting (continued)

WARNING Make sure to determine the causes of outages. Do not leave the boiler operating without a complete diagnosis.

WM97+ control fault indications

1. The WM97+ control provides diagnostic information for both automatic reset conditions and manual reset conditions. See Figure 84, page 74 for information available on the WM97+ control display and navigation instructions for all menus.

2. Figure 112 shows the screen behavior during an automatic or manual reset condition. The table below the display illustration lists manual reset conditions and how to reset from them.

3. Figure 113, page 105 lists conditions that will cause the control to display a constant red screen. The boiler will automatically restart if the condition self-corrects or the technician uses the WM97+ control's manual reset screens to reset.

Figure 112 WM97+ control display toggles when in lockout, with screen flashing red to gray

NOTICE: Screen background color alternates from RED to no backlight (gray screen).
Troubleshooting (continued)

Figure 113 Troubleshooting suggestions for WM97+ boilers — WM97+ control Error Condition Log

The WM97+ control is able to record information about the boiler’s condition at the time of the three previous faults or errors. This information is available to view in Contractor Menus under “DIAGNOSTICS” by selecting “ERRORS.” The control will display the following information:

<table>
<thead>
<tr>
<th>Information</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Fault</td>
<td>Records the number of internal control faults</td>
<td>Select and press the enter key to reset this count</td>
</tr>
<tr>
<td>Ignition Retries</td>
<td>Displays the number of ignition attempts in the current ignition sequence.</td>
<td></td>
</tr>
<tr>
<td>Manual Reset Count</td>
<td>Records number of lockouts that required a manual reset since this count was last cleared.</td>
<td>Select and press the enter key to reset this count</td>
</tr>
<tr>
<td>Auto Reset Count</td>
<td>Records number of lockouts that have automatically reset since this count was last cleared.</td>
<td>Select and press the enter key to reset this count</td>
</tr>
<tr>
<td>Lockout History 1</td>
<td>Details of present or last recorded lockout</td>
<td>Select and press the enter key for more details</td>
</tr>
<tr>
<td>Lockout History 2</td>
<td>Details of boiler during the second oldest lockout still in memory</td>
<td>Select and press the enter key for more details</td>
</tr>
<tr>
<td>Lockout History 3</td>
<td>Details of boiler during the oldest lockout still in memory</td>
<td>Select and press the enter key for more details</td>
</tr>
</tbody>
</table>

How to read the last 3 lockout histories:

1. Scroll down to "DIAGNOSTICS" and press the enter key (Square Key in center)
2. Scroll down to "ERRORS" and press the enter key (Square Key in center)
3. Scroll down to "LOCKOUT HISTORY #" and press the enter key.
4. Scroll to choose the either "MANUAL RESET" or "AUTO RESET" and press the enter key to display the fault condition that was recorded.
5. Press the left arrow key to return to the LOCKOUT HISTORY # screen. Scroll up or down to highlight other choices and press the enter key to view the details of the boiler’s condition when the lockout was recorded.

How to clear all lockout histories:

1. While on the "ERRORS" screen, hold the Left and Right arrow buttons simultaneously for 7 seconds.
Troubleshooting (continued)

Figure 114 Troubleshooting suggestions for WM97+ boilers — Fault displays, diagnostics and corrective actions

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
<th>Diagnostics</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing shown on display screen and boiler will not respond to call for heat</td>
<td>Control is not receiving 24V power</td>
<td>Check wiring for short circuit or incorrect wiring.</td>
<td>Correct wiring per wiring diagram including connection of transformer to the WM97+ control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check 3-amp low voltage fuse on WM97+ control shown on page 103.</td>
<td>Replace fuse with proper part found in replacement part section of this manual. If fuse blows again recheck wiring per diagram.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check transformer connection to the WM97+ control per wiring diagram. Check for 24V output of transformer.</td>
<td>Replace transformer if it is receiving 120Vac, but not outputting 24Vac.</td>
</tr>
<tr>
<td>Nothing is shown in display screen and no other boiler components are operating</td>
<td>Control is not receiving 120V power</td>
<td>Check service switch and/or circuit breaker to boiler turned on.</td>
<td>Turn on service switch to power boiler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is there 120 Volts at the service switch?</td>
<td>Troubleshoot and correct the power supply to the service switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the WM97+’s ON/OFF POWER SWITCH located on top of the boiler</td>
<td>Turn the WM97+’s power switch to ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for 120 volts at the line voltage terminal block located inside the top left electrical compartment</td>
<td>Correct wiring inside the control pod using the wiring diagram in this manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspect 12-amp fuse as shown on page 103. Replace if necessary.</td>
<td>Replace the fuse with proper part found in the replacement part section of this manual. If fuse blows again recheck wiring per diagram.</td>
</tr>
<tr>
<td>Nothing is shown on display screen, but boiler is operating</td>
<td>Occurs if the communication is lost from the WM97+ control to the display.</td>
<td>Check for loose connections and proper pin alignment/engagement on the WM97+ control’s plug P9 and the back of the display circuit board.</td>
<td>Check for continuity on the wire harness from the display to the WM97+ control. See repair parts section for proper replacement part.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cycle power off and on using boiler power switch and check for operation.</td>
<td>Replace with new display module. See repair parts section for proper replacement part.</td>
</tr>
<tr>
<td>TEMP RISE TOO QUICKLY</td>
<td>Occurs if supply water temperature in heat exchanger rises faster than 29°F per second during the first two minutes the burner is on.</td>
<td>Automatically resets after 1 minute delay or using manual reset on display.</td>
<td>Verify water pipe is installed correctly per instructions in this manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual reset is necessary after 5 automatic resets have occurred during the same Priority heat demand. Reset using manual reset screen on display.</td>
<td>Verify proper circulator and speed for boiler size and system requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See message displayed TEMPERATURE SENSOR and follow procedure for loose connections.</td>
<td></td>
</tr>
<tr>
<td>SUPPLY 58°F > RETURN</td>
<td>Boiler Out temperature has exceeded the Boiler In temperature by more than 58°F</td>
<td>Automatically resets after 30 second delay or using manual reset on display.</td>
<td>Verify water pipe is installed correctly per instructions in this manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verify proper circulator and speed for boiler size and system requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See message displayed TEMPERATURE SENSOR and follow procedure for loose connections.</td>
</tr>
<tr>
<td>RETURN > SUPPLY</td>
<td>Occurs if a return water temperature is greater than the corresponding supply temperature by 10°F or more.</td>
<td>Automatically resets when condition no longer exists.</td>
<td>Verify proper flow direction of the boiler circulator. This circulator must be installed to push water through the boiler’s return pipe as shown on page 40.</td>
</tr>
</tbody>
</table>
Troubleshooting (continued)

Figure 114 Troubleshooting suggestions for WM97+ boilers — Fault displays, diagnostics and corrective actions (cont.)

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
<th>Diagnostics</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE SENSOR</td>
<td>Occurs if a temperature sensor has electrically shorted (SHORT) or has become disconnected (OPEN).</td>
<td>Will automatically reset if the condition clears.</td>
<td>Check all the temperature readings of the boiler on the DIAGNOSTICS - TEMPERATURES menu to determine if any sensors are currently displayed as SHORT or OPEN. Compare this to the boiler temperatures recorded in the DIAGNOSTICS - ERRORS - LOCKOUT HISTORY # - TEMPERATURES during the last several lockout conditions. Determine which sensors are suspect and measure their resistance value and compare it to the values shown in Figure 108, page 103. If the resistance values are incorrect replace the temperature sensor. Refer to repair parts section for proper part number. OUTDOOR TEMP is the optional outdoor air temperature sensor. If this are not being used they will always be shown as OPEN. This is normal unless the sensors were installed. Check wire harness for loose connections and pin engagement at sensor connection, chassis mount connection through control housing, and the WM97+ control. Unplug connection at sensor and at WM97+ control and check continuity between ends. If problem persists after checking items above replace WM97+ control. Refer to repair parts section for kit number.</td>
</tr>
<tr>
<td>FLUE TEMP TOO HIGH</td>
<td>Occurs if flue temperature sensor exceeds 216°F.</td>
<td>Automatic reset occurs if temperature drops below 216°F for 2.5 minutes. Manual reset is required if the temperature rises above 225°F. Reset using manual reset screen on display.</td>
<td>Follow procedure for above for SHORT and OPEN sensor conditions to properly diagnose sensor. If measured resistance values of sensors convert to temperatures separated by more than 10°F replace the sensor. Follow procedure for above for SHORT and OPEN sensor conditions to properly diagnose sensor. In addition inspect heat exchanger combustion chamber and flueways for abnormal wear or buildup. Inspect vent system for abnormal wear or damage. Contact Weil-McLain Technical Support.</td>
</tr>
<tr>
<td>LOW WTR CUTOFF OPEN</td>
<td>Occurs if internal low water cutoff contacts open</td>
<td>Automatic reset occurs if contacts are open at least one second, but less than 5 seconds. Manual reset of WM97+ control if contacts are open longer than 5 seconds.</td>
<td>Check for low water condition in system. Repair system as necessary refer to piping section of this manual. If low water condition does not exist, check Diagnostics — Inputs screen to view status of Low Water Cutoff. If shown as OPEN check wiring between LWCO and WM97+ control. If wiring is alright, then replace the LWCO.</td>
</tr>
<tr>
<td>TANK SENSOR FAULT—TOP</td>
<td>Aqua Logic (CWH) installations only; Occurs if Upper Tank Sensor has electrical shorted (SHORT) or has become disconnected (OPEN).</td>
<td>Will automatically reset if the condition clears.</td>
<td>Check temperature readings in the DIAGNOSTICS — TEMPERATURES menu to determine if any sensors currently display SHORT or OPEN. Determine which sensor is suspect and measure its resistance value and compare it to the value shown in Figure 108, page 103. If the resistance value is incorrect, replace the temperature sensor. Refer to the repair parts section for proper part number.</td>
</tr>
<tr>
<td>TANK SENSOR FAULT—BOTTOM</td>
<td>Aqua Logic (CWH) installations only; Occurs if Lower Tank Sensor has electrical shorted (SHORT) or has become disconnected (OPEN).</td>
<td>Will automatically reset if the condition clears.</td>
<td>Check temperature readings in the DIAGNOSTICS - TEMPERATURES menu to determine if any sensors currently display SHORT or OPEN. Determine which sensor is suspect and measure its resistance value and compare it to the value shown in Figure 108, page 103. If the resistance value is incorrect, replace the temperature sensor. Refer to the repair parts section for proper part number.</td>
</tr>
<tr>
<td>DISPLAY COMM</td>
<td>Occurs if display communications out for 30 seconds</td>
<td>Automatically resets when communication is re-established.</td>
<td>Check for a loose connection at the molex plug on the control and connection on the back of the display.</td>
</tr>
</tbody>
</table>
Troubleshooting (continued)

Figure 114 Troubleshooting suggestions for WM97+ boilers — **Fault displays, diagnostics and corrective actions (cont.)**

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
<th>Diagnostics</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMIT OPEN</td>
<td>Occurs if manual or automatic reset limit opens.</td>
<td>Automatic external limit will reset 2½ minutes after external limit device closes. Manual limit fault must be reset by choosing Reset Lockout on the display.</td>
<td>Is there an external safety device connected? If yes, trouble shoot the external limit to determine and correct the cause that opened the limit. Also check for loose wiring connections. Remove the top right electrical cover and inspect the connector. Ensure a jumper is installed across the MAN LIMIT terminals if not using a manual reset external limit. Ensure a jumper is installed across the AUTO LIMIT terminals if not using a automatic reset external limit.</td>
</tr>
<tr>
<td>HIGH TEMP LIMIT</td>
<td>Boiler temperature sensor reached High Temp Limit setting (no higher than 200°F)</td>
<td>Reset using manual reset screen on display</td>
<td>Verify that high limit setting is at least 10°F above the setpoint temperature. Verify all isolation valves are open and circulators are programmed into the WM97+ control properly. The internal boiler circulator can be configured to turn on or off with DHW and heating zones. Refer to the WM97+ control Setup section to configure these properly for the system. Verify water pipe is installed correctly per instructions in this manual. Verify proper circulator sizing for boiler size and system requirements. See message displayed TEMPERATURE SENSOR and follow procedure for loose connections.</td>
</tr>
<tr>
<td>FLAME FAULT</td>
<td>Occurs if flame is detected when there should be no flame</td>
<td>Reset using manual reset screen on display</td>
<td>Burner may be operating too hot due to incorrect combustion. Inspect flame and conduct combustion test. Force boiler into by-firing. Check blue gases with combustion analyzer and correct using the maintenance and startup procedure in this manual. Verify FLAME SIGNAL value quickly goes to zero on the DIAGNOSTICS - INPUTS screen when the gas valve closes. Check for flame at burner via flame current with burner off. Turn boiler off and watch flame through observation port. If flame continues after shutdown replace gas valve and venturi.</td>
</tr>
<tr>
<td>GAS VALVE FAULT</td>
<td>The WM97+ control has detected a problem with it gas valve output circuit</td>
<td>Control will do automatic retry; lockout if retry unsuccessful; retry 1 hour after lockout — restart if condition cleared, but lockout requiring manual reset if condition still present Requires manual reset if control is in lockout.</td>
<td>Check wire harness connections between gas valve and WM97+ control. Check resistance between control and gas valve. Disconnect low-voltage wires connected to the boiler low-voltage terminal strip. Check all wire leads from system from system for stray voltage. Any voltage in excess of 0.5 volts will cause gas valve fault failures. Correct the cause of stray voltages before reconnecting wires. After correcting problem, check to see if gas valve fault issue is corrected. If lockout reoccurs replace WM97+ control.</td>
</tr>
</tbody>
</table>
Troubleshooting (continued)

Figure 114 Troubleshooting suggestions for WM97+ boilers — Fault displays, diagnostics and corrective actions (cont.)

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
<th>Diagnostics</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOWER FAULT</td>
<td>Blower unable to reach required speed or does not reach 0 RPM when turned off. NOTICE: WM97+70 or 110 only — The blower will not rotate without a low voltage signal. Unplugging the low voltage blower wire harness will not allow or cause the boiler to rotate.</td>
<td>Reset using manual reset screen on display: WM97+ control will check again after 1 hour and will automatically restart if condition is corrected</td>
<td>Check wire harness for loose connections and pin engagement at blower connections, chassis mount connection through control housing, and WM97+ control. Unplug connection at blower and at WM97+ control and check continuity between ends. Blower is connected to both low voltage and line voltage harness. Check Diagnostics - Inputs screen with boiler in standby mode and blower not running. If BLOWER SPEED is not 0 RPM then replace blower. If blower does not rotate during ignition sequence check for 120V power at blower connection. If 120Vac power at blower motor and it doesn’t start replace blower. Check power at WM97+ control. If 120Vac is not present at WM97+ control when boiler is powered replace WM97+ control. Refer to repair parts section.</td>
</tr>
<tr>
<td>IGNITION FAULT</td>
<td>Boiler went through 5 ignition attempts and never detected flame</td>
<td>Automatically resets after 1 hour or can be reset by performing manual reset on boiler.</td>
<td>Check condensate trap for blockage allowing condensate to accumulate inside heat exchanger. Check ignition cable connection. Fouled, worn, bent, or faulty igniter. Fouled igniters can be cleaned for additional use with steel wool. Worn or badly fouled igniters should be replaced with the proper repair part. Igniter rods should be parallel with a 3.5 mm (0.138 in) spark gap for 70/110 and a 4.8 mm (0.189 in) spark gap for 155 models. NOTICE: Thin white deposits on the igniter are typical, but brown or black deposits could be the result of flue gas recirculation. Thoroughly inspect the venting system and termination for the possibility of leakage or flue gas feedback into the air line. Dirty burner and/or heat exchanger will cause high back pressure and poor ignition. Follow procedure in maintenance section of this manual to clean burner and heat exchanger. Visual inspection of flue ways may not be sufficient to diagnose condition. Check: combustion settings on high and low fire and adjust per setup instructions if necessary. Check: incoming gas pressure with boiler off and at high fire. Adjust within limits on rating label. Verify correct boiler model is selected in control and high altitude is selected for installations 5,500 feet above sea level. Check: ignition cable resistance. Should measure 1000 Ohms (+/- 50 Ohms) Check for flue pipe and intake pipe restrictions or blockage Check burner fasteners and gaskets Check: venturi gaskets and proper propane orifice bushing</td>
</tr>
</tbody>
</table>
Maintenance

Boiler circulator repair

Circulator cartridge replacement

1. The circulator supplied with the boiler is a water-lubricated, cartridge-type circulator. If the circulator fails, try replacing the circulator cartridge instead of replacing the entire circulator. Replacing the circulator can be much more complicated, requiring more time to do.

2. Purchase the circulator cartridge, available through Weil-McLain distributors. Find the cartridge part number on the circulator label or in Figure 130, page 126 (WM97+70 or 110) or Figure 132, page 128 (WM97+155).

3. Isolate and drain the boiler to at least below the level of the boiler internal circulator.
 a. Turn the boiler ON/OFF switch to OFF.
 b. TURN OFF all power to the boiler.
 c. Close the external manual gas valve.
 d. Close the external piping isolation valves on the boiler supply and return lines.
 e. Close the isolation valves in the DHW circuit if connected to the bottom boiler connections.
 f. WM97+70 or 110 — Close the expansion tank shutoff valve (item 160, Figure 131, page 127).
 g. Connect a hose to the boiler drain valve. Open the drain valve and drain the boiler to at least below the level of the boiler internal circulator.
 h. To allow air to flow into the boiler piping during draining, lift the relief valve lever slightly or open a purge valve in the external piping, if available.

4. Disconnect the circulator wire harness connector.

5. Follow instructions supplied with the replacement circulator cartridge to remove the circulator motor housing and replace the cartridge. Reassemble the circulator.

6. Refill the boiler with water, allowing air to escape through the relief valve or purge valve, if available.

7. Reconnect the circulator wiring connector.

8. Close the boiler drain valve. Open all isolation valves, including the internal expansion tank isolation valve.

9. Restore power and restart the boiler, following all procedures in the Start-up instructions, beginning on page 87.

Oiled bearing circulators

1. The circulator installed in the WM97+ boiler is water-lubricated. No oiling is required.

2. Check other circulators in the system. Oil any circulators requiring oil, following circulator manufacturer’s instructions. Over-oiling will damage the circulator.
Maintenance (continued)

Cleaning the heat exchanger WATER SIDE, when required

1. Isolate the boiler from the heating system.
2. Obtain Sentinel X400 cleaner from Weil-McLain. Follow instructions supplied with the cleaner to clean the boiler heat exchanger.
 ![WARNING] Use ONLY the cleaning product available from Weil-McLain, Sentinel X400. See the Repair Parts section at the end of this manual for ordering information. Using other cleaning materials or methods could cause permanent damage to the boiler heat exchanger.
 ![WARNING] Inspect the heating system water. If there is evidence of sediment or corrosion, the boiler must be isolated from the system. The system must then be thoroughly cleaned to remove all sediment. Isolated the cause of the system corrosion and correct the problem(s) before placing the boiler back in service. Failure to comply could result in severe personal injury, death or substantial property damage.

Checking the heat exchanger-to-condensate dish seal

1. Remove the front door and rotate the control housing assembly forward as shown in Figure 115 so it will be out of the way or disconnect the wire harnesses and place the control aside in a safe location.
2. Place a container under the boiler for drainage.
3. Disconnect the flexible condensate drain tube from the condensate drain piping so it’s outlet end is free to move.
4. Loosen the condensate trap upper ferrule (see Figure 115) and rotate the trap assembly so the flexible drain tube can be lifted as shown. Tighten the upper ferrule when in position.
 ![WARNING] The boiler is shipped with a 24-inch flexible tube. If the tube has been cut shorter, attach a ¾” PVC coupling to the flexible tube with tape. Then use a length of ¾” PVC pipe long enough to locate the funnel as directed.
5. Insert a funnel into the open end of the flexible tube. Wrap the funnel-to-tube joint with tape so it will be watertight.
6. Lift the funnel up as shown in Figure 115 so it is from 6 to 10 inches above the bottom of the boiler.
7. Pour one gallon of water (no more than one gallon) slowly into the funnel. Use tape or cord to secure the funnel and flexible tube up in position so the funnel remains 6 to 10 inches above the bottom of the boiler.
8. Use a flashlight and mirror to inspect around the perimeter of the heat exchanger where it joins the condensate dish (see Figure 116 for a WM97+70 or 110 or Figure 117 for WM97+155).
9. There must be no signs of water leakage anywhere around the heat exchanger-to-condensate dish joint.
 ![WARNING] If there are signs of leakage, wipe the area with a clean rag to ensure there is a leak and not just splashed water. If the leak continues, the boiler must not be operated until a new sealing ring is obtained. Follow the instructions supplied with the sealing ring kit to disassemble boiler components as necessary to access and replace the seal.
10. If there are no indications of leakage, the seal is acceptable.
11. Remove the funnel, drain the water into the container below, return the condensate trap assembly to its original position, and re-connect the flexible drain tube to the condensate drain tubing.

Figure 115 Adding water to exchanger for condensate dish seal check

Figure 116 Inspect the heat exchanger-to-condensate dish joints — 70/110

Figure 117 Inspect the heat exchanger-to-condensate dish joints — 155
Cleaning heat exchanger flue side, 70/110

Cleaning the WM97+70 or 110 heat exchanger FLUE SIDE or accessing the burner, if required

⚠️ WARNING The boiler contains ceramic fiber materials. Use care when handling these materials per instructions on page 96 of this manual. Failure to comply could result in severe personal injury.

Tools required
1. Long-handled Torx driver, #20.
2. Phillips head screwdriver, #2.
3. Torque wrench.
4. Putty knife.
5. Wrench or socket, 10 mm.

Before proceeding:
1. Shut down the boiler:
 a. Follow “To Turn Off Gas to Appliance” instructions on boiler and Lighting instructions. Close the boiler manual gas valve.
2. Allow time for the boiler to cool to room temperature if it has been firing.
3. Remove jacket front door by releasing the two clamps at the bottom of the jacket door.
4. Lift the jacket door away from the boiler to remove.

Remove components to allow access
1. See Figure 119, page 113 part A to locate components referenced in the following.
2. See Figure 119, page 113 part B.
 a. Pull the silencer straight forward until it snaps free of the blower housing. Set the air silencer aside. Rotate the air inlet silencer if needed to clear as it is removed.
 b. Remove the gas valve retainer clip (item 4) and set aside. Pull the gas valve slightly to the right until it disengages from the venturi (item 5).
 c. Disconnect the blower end of the gas valve sense line (item 8).
 d. Remove the four 10-mm hex nuts (item 9) that secure the heat exchanger cover plate (item 6).
 e. Disconnect the ground wire and electrode wire from the igniter (item 7).
 f. Remove the blower retainer clip (item 15). Set aside.
 g. Remove the blower by pulling down. Disconnect the two blower wiring harnesses on the back side of the blower.
 h. Lift the cover plate/venturi/burner assembly vertically until the refractory (part 3, item 12) clears the heat exchanger.
 i. Tilt the cover plate/venturi/burner assembly slightly forward. Then pull the assembly forward and out of the jacket.
 j. Remove the igniter by removing the two Phillips head igniter screws. Set the igniter, its gasket and screws aside. Be careful when handling the igniter not to damage the igniter ceramic.
 k. Inspect the igniter ceramic and electrodes. Clean the electrodes carefully with steel wool. If the igniter ceramic is cracked or damaged, replace the igniter with a new one.

⚠️ WARNING Handle the cover plate/venturi/burner assembly carefully to avoid damage to the igniter or refractory. Place the assembly on a clean, flat surface with the assembly on its side, as shown in Figure 119, page 113 part C and part D.

3. See Figure 119, page 113 part C.
 a. Use a wide-blade putty knife (item 11) to gently pry the refractory from the heat exchanger cover plate. The refractory is attached with silicone adhesive and should separate with a little pressure on the putty knife.

⚠️ WARNING DO NOT gouge or crack the refractory. The refractory is made of ceramic fiber materials. Read the ceramic fiber WARNING on page 96 before handling or disposing of ceramic fiber materials.

Inspect and clean the burner
1. See Figure 119, page 113 part D.
 a. Slide the refractory (item 12) over the burner and off. Set the refractory aside where it will be kept clean and protected from damage. If the refractory is damaged, it must be discarded and replaced with a new one.
 b. Remove the three #20 Torx screws (item 14) securing the burner (item 10) to the cover plate. Set aside.
 c. Remove the burner and its gasket (item 13).
 d. Inspect the interior of the burner. Brush and vacuum the interior if needed to remove lint or sediment. Alternative cleaning methods: • blow air or nitrogen from the inside out; • clean with a water spray from inside the burner;
Cleaning heat exchanger flue side, 70/110 (continued)

Figure 119 Accessing the burner or heat exchanger (see Legend on next page)
Cleaning heat exchanger flue side, 70/110 (continued)

- swirl the burner thoroughly in a bucket of mild liquid laundry detergent water, then rinse thoroughly.
- Inspect the burner exterior. It must be in good condition, with no visible damage.
- Inspect the burner gasket. If the gasket is damaged, obtain a new gasket before re-installing the burner.

Inspect and clean the heat exchanger

1. Access the heat exchanger interior by following the previous instructions.
2. See Figure 119, page 113 part E.
3. Use a strong light to visually inspect the interior of the heat exchanger. Make sure the flueways (tubes) are clear and unobstructed.
 - If soot or debris is present, obtain a fresh water hose with sprayer.
4. Use a vacuum cleaner to remove any accumulation on the heating surfaces. This includes removing any pieces of refractory that may have dropped into the exchanger.

WARNING DO NOT use any solvent when cleaning the exchanger.

5. If the vacuum cleaner is unable to clean completely, wash the heating surfaces with clean, warm water.
 - Place a bucket under the boiler condensate drain connection.
 - Then loosen the condensate trap upper nut and slide the trap off of the drain connection. (See Figure 71, page 62 for reference.)
 - Spray water into the heat exchanger and tubes to remove sediment. Collect water in the bucket below.
6. Inspect the heat exchanger cover plate refractory. Replace if insulation is damaged.

Reinstall components

1. See Figure 119, page 113 for reference.
2. Reinstall the burner (item 10) and burner gasket (item 13) on the cover plate (item 6). Tighten the burner screws (item 14) using a torque wrench. The screws must be secure, but the torque must not exceed 20 inch-pounds.
3. Apply a ring of silicone adhesive on the cover plate (to secure the refractory).
4. Slide the refractory (item 12) over the burner. Align the refractory and press in place.
5. **Before** handling the assembly, allow the adhesive to set enough that the refractory is firmly held in place.
6. Reinstall the igniter assembly (item 7).
 - The igniter gasket must be intact and in good condition. Replace with a new gasket if necessary.
 - Insert the igniter into the cover plate opening, with the gasket in position.
 - Reinstall the two Phillips head screws finger tight.
 - Use a torque wrench to tighten the igniter screws. DO NOT exceed 20 inch-pounds torque.
7. Reinstall the venturi/cover plate assembly (items 5 and 6) and secure the cover plate with 10-mm hex nuts (item 9).
8. Reconnect the igniter wire and the igniter ground wire.

WARNING You must gradually tighten the cover plate nuts using a torque wrench. The final torque MUST NOT exceed 45 inch-pounds. Alternate tightening until all nuts reach 45 inch-pounds.

9. Reinstall the blower.
 - Reconnect the two blower wiring harnesses.
 - Slide the blower up onto the venturi sleeve.
 - Reinstall the blower retainer clip, item 15.
10. Reinstall the air inlet silencer (item 1) by pressing onto the air inlet adapter. Rotate into the normal vertical position (see part A) of Figure 119, page 113.
11. Slide the gas valve (item 3) outlet collar into the venturi (item 5) opening. Make sure the gas valve-to-venturi O-ring (item 5, Figure 10, page 15) is in place and in good condition. Inspect the gas valve flex line, making sure there are no signs of wear or damage. Replace if necessary.
12. Slide the gas valve retainer clip (item 4) into position to secure the gas valve.
13. Reinstall the condensate trap on the boiler condensate drain connection. (See Figure 71, page 62 for reference.)

WARNING Perform a complete start-up procedure when putting the boiler back into service. See page 87 and all instructions for start-up and verification. Include a soap suds leak test on all interior and exterior gas piping after starting the boiler.
Cleaning the WM97+155 heat exchanger FLUE SIDE or accessing the burner, when required

The boiler contains ceramic fiber materials. Use care when handling these materials per instructions on page 96 of this manual. Failure to comply could result in severe personal injury.

Tools required
1. Metric wrench or socket, 10 mm.
2. Phillips head screwdriver, #2.
3. Torque wrench.
4. Putty knife.

Before proceeding:
1. Shut down the boiler:
 a. Follow "To Turn Off Gas to Appliance" instructions on boiler and Lighting instructions.
 b. Close the boiler manual gas valve.
2. Allow time for the boiler to cool to room temperature if it has been firing.
3. Remove jacket front door by releasing the two clamps at the bottom of the jacket door.
4. Lift the jacket door away from the boiler to remove.

Remove and inspect the igniter assembly
1. See Figure 121, page 117 part A.
2. NOTE: The igniter assembly may be left in place if only accessing the burner. If the heat exchanger cover plate is to be removed, the igniter assembly must be removed FIRST.
3. Disconnect the ground wire and electrode wire from the igniter (item 7).
4. Remove the two Phillips-head screws securing the igniter to the heat exchanger cover plate (item 6).
5. Carefully slide the igniter out of its mounting slot.
6. Remove and inspect the igniter gasket. Replace with a new gasket if necessary.
7. Inspect the igniter ceramic and electrodes. Clean the electrodes carefully with steel wool. If the igniter ceramic is cracked or damaged, replace the igniter with a new one.

Remove, inspect and clean the burner
1. See Figure 121, page 117 part A, part B and part C.
2. Use a Phillips screwdriver to remove the three M4 screws and flat washers (item 10) that secure the burner access cover (item 4) to the heat exchanger cover plate (item 6).
3. Remove the burner cover plate (item 4) and the burner (item 11).
4. Leave the burner gasket (item 12) in place in the heat exchanger cover plate until the plate is removed from the heat exchanger. This gasket is ceramic fiber and may pull apart or stick to the burner on removal.
5. Inspect the burner cover plate seal (item 13). Discard and use a new seal during re-assembly if the seal is damaged in any way.
6. Inspect the interior of the burner. Brush and vacuum the interior if needed to remove lint or sediment. Alternative cleaning methods: • blow air or nitrogen from the inside out; • clean with a water spray from inside the burner; • swirl the burner thoroughly in a bucket of mild liquid laundry detergent water, then rinse thoroughly.
7. Inspect the burner exterior. It must be in good condition, with no visible damage.
8. Clean the under side of the burner flange (see item 15) with a soft brush to remove any gasket fragments remaining.
9. If the heat exchanger cover plate will not be removed (that is, if servicing the burner only), remove the burner gasket from the heat exchanger cover plate if still in place. Do not let fragments drop into the heat exchanger if the gasket pulls apart during removal. Replace the gasket with a new one during reassembly.

Remove components to access the heat exchanger flue side
1. See Figure 121, page 117 part A to locate components referenced in the following.
2. Remove the air silencer and disconnect gas line:
 a. See Figure 121, page 117 part A and part B.
 b. Locate the air silencer clip, item 8. Pull on the right side of the clip until it rotates forward as shown in part A inset.
 c. Slide the air silencer (item 1) down and off of the venturi (item 5). Set the air silencer aside.
 d. Disconnect the flexible gas line where it connects just below the gas valve (item 3). Lay the free end of the flexible gas line to the side.

 WARNING: Use two wrenches when disconnecting the flexible gas line to prevent damage to the gas valve and other gas line components.

 e. Disconnect the two wire harnesses connected to the blower and the wire harness connected to the gas valve.
3. Remove the burner following the procedure in this section. Then remove the heat exchanger cover plate/blower/venturi/gas valve assembly:
 a. See Figure 121, page 117 part A, part C and part D.
 b. Use a 10-mm wrench to remove the five M6 nuts (item 9) that secure the heat exchanger cover plate (item 6) to the heat exchanger.
 c. Lift the cover plate/blower/venturi/gas valve assembly vertically until the refractory (part D, item 16) clears the heat exchanger.
 d. Then pull the assembly forward and out of the jacket.
 e. Carefully place the cover plate/blower/venturi/gas valve assembly aside.

 WARNING: Handle the cover plate/venturi/burner assembly carefully to avoid damage to the components or refractory. Place the assembly on a clean, flat surface.
Cleaning heat exchanger flue side, 155 (continued)

Inspect refractory and replace burner gasket
1. See Figure 121, page 117 part D.
 a. Inspect the refractory to make sure it is intact, with no visible damage.
 b. If the refractory must be replaced, use a wide-blade putty knife to gently pry the refractory from the heat exchanger cover plate. The refractory is attached with silicone adhesive and should separate with a little pressure on the putty knife.
 c. When replacing the refractory, apply a ring of silicone adhesive on the cover plate. Place the refractory onto the cover plate. Before handling the assembly, allow the adhesive to set enough that the refractory is firmly held in place.
2. Remove the burner gasket (item 12) from the heat exchanger cover plate.
3. Clean the gasket surface with a soft brush to remove any gasket residue.
4. The burner gasket must be replaced with a new one when the boiler is re-assembled after servicing.

Inspect and clean the heat exchanger
1. Access the heat exchanger interior by following the previous instructions. Remove and inspect the heat exchanger cover plate gasket. Replace if necessary.
2. See Figure 121, page 117 part E.
3. Use a strong light to visually inspect the interior of the heat exchanger. Make sure the flueways (tubes) are clear and unobstructed.
4. Use a vacuum cleaner to remove any accumulation on the heating surfaces. This includes removing any pieces of refractory than may have dropped into the exchanger.
 c. Tighten the nuts gradually, adjusting a little at a time. Alternate and repeat until all are tightened evenly.
 d. Do not over-tighten (torques no more than 45 inch-pounds).
3. Reinstall the burner (item 11), burner gasket (item 12) and burner access cover seal (item 13) on the heat exchanger cover plate (item 6).
 a. Insert and tighten the burner cover plate screws and washers (item 10) using a Phillips screwdriver. The screws must be secure, with torque no more than 20 inch-pounds.
4. Reinstall the igniter assembly (item 7).
 a. The igniter gasket must be intact and in good condition. Replace with a new gasket if necessary.
 b. Insert the igniter into the cover plate opening, with the gasket in position.
 c. Reinstall the two Phillips head screws finger tight.
 d. Use a torque wrench to tighten the igniter screws. DO NOT exceed 25 inch-pounds torque.
 e. Reconnect the igniter wire and the igniter ground wire.
5. Reconnect the flexible gas line to the gas valve using two wrenches.
6. Reinstall the air inlet silencer (item 1) by pressing onto the venturi (item 5). Rotate the air silencer clip (item 8) and snap it onto the gas line.
7. Reconnect the wire harnesses to the blower and gas valve.
8. Reinstall the condensate trap on the boiler condensate drain connection. (See Figure 71, page 62 for reference.)

Reinstall components
1. See Figure 121, page 117 for reference.
2. First, re-install the heat exchanger cover plate/refractory/blower/venturi/gas valve assembly on the heat exchanger.
 a. Seat the heat exchanger cover plate gasket on the heat exchanger sealing surface.
 b. Secure the heat exchanger cover plate (item 6) to the heat exchanger with the five 6-mm nuts using a 10-mm wrench.
Cleaning heat exchanger flue side, 155 (continued)

Figure 121 Accessing the burner or heat exchanger (see Legend on next page)
Replacement parts

WARNING DO NOT SERVICE THE BOILER WITHOUT A WM97+ MAINTENANCE KIT AVAILABLE

The WM97+ maintenance kit includes components that may have to be replaced when accessing or disassembling parts of the boiler. Failure to replace damaged components and to use only the parts specifically intended for the boiler can result in severe personal injury, death or substantial property damage. See Figure 123, page 119 for part number.

REPLACEMENT PART NUMBERS

Weil-McLain part numbers are found in this manual and in *Weil-McLain Boilers and Controls Repair Parts Lists.*

WHEN OPERATING THE BOILER ON PROPANE GAS

WARNING ALL WM97+ boilers must be converted in order to operate with propane gas.

Figure 122 Propane conversion kits and instructions

<table>
<thead>
<tr>
<th>Boiler model</th>
<th>Kit part #</th>
<th>Kit location</th>
<th>Installation instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM97+70</td>
<td>540-202-834</td>
<td>Shipped loose with boiler</td>
<td>See page 14</td>
</tr>
<tr>
<td>WM97+110</td>
<td>540-202-835</td>
<td>Shipped loose with boiler</td>
<td>See page 14</td>
</tr>
<tr>
<td>WM97+155</td>
<td>540-202-836</td>
<td>Shipped loose with boiler</td>
<td>See page 14</td>
</tr>
</tbody>
</table>

WARNING Failure to adhere to these guidelines can result in severe personal injury, death or substantial property damage.

OBTAIN PARTS ONLY THROUGH WEIL-McLAIN

Replacement parts must be purchased through a local Weil-McLain distributor. When ordering, specify boiler model and size and include description and part number of replacement part. Results from using modified or other manufactured parts will not be covered by warranty and may damage boiler or impair operation.

THE BOILER CONTAINS CERAMIC FIBER MATERIALS

The boiler contains ceramic fiber materials. Use care when handling these materials per instructions on page 96 of this manual. Failure to comply could result in severe personal injury.

REINSTALL JACKET DOOR

Inspect boiler jacket front door gaskets and reinstall boiler jacket front door after start or servicing. The boiler front door must be securely fastened to the boiler to prevent boiler from drawing air from inside the boiler room. This is particularly important if the boiler is located in the same room as other appliances. Failure to keep the door securely fastened could result in severe personal injury or death.

BEFORE SERVICING or MAKING CONNECTIONS —

ALWAYS TURN POWER OFF TO THE BOILER TO PREVENT ELECTRICAL SURGES, WHICH CAN DAMAGE BOILER COMPONENTS.

LABEL WIRES BEFORE REMOVING

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation.
Replacement parts (continued)

Figure 123 Miscellaneous parts and kits

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Antifreeze, Sentinel X500 (1 gal)</td>
<td>592-900-209</td>
</tr>
<tr>
<td></td>
<td>Antifreeze, Sentinel X500 (5 gal)</td>
<td>592-900-006</td>
</tr>
<tr>
<td></td>
<td>Corrosion inhibitor, Sentinel X100</td>
<td>592-900-002</td>
</tr>
<tr>
<td></td>
<td>Sentinel X100 Quick Test Kit</td>
<td>592-900-005</td>
</tr>
<tr>
<td></td>
<td>Cleaner, Sentinel X400</td>
<td>592-900-003</td>
</tr>
</tbody>
</table>

CHEMICALS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>Sidewall separate pipes vent/air termination kits (includes two cover plates)</td>
<td>383-700-171</td>
</tr>
<tr>
<td></td>
<td>Kit for 2" PVC vent and air pipes</td>
<td>383-500-100</td>
</tr>
<tr>
<td></td>
<td>Kit for 3" PVC vent and air pipes</td>
<td>383-700-172</td>
</tr>
</tbody>
</table>

BOILER ACCESSORIES

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>WM97+70/110 maintenance kit — igniter, igniter gasket, venturi gasket, cover plate gasket, venturi-gas valve o-ring, refractory, silicone, inhibitor test kit, clips</td>
<td>383-700-165</td>
</tr>
<tr>
<td>120</td>
<td>WM97+155 maintenance kit — igniter, igniter gasket, venturi gasket, cover plate gasket, venturi-gas valve o-ring, refractory, silicone, inhibitor test kit, clips</td>
<td>383-700-200</td>
</tr>
<tr>
<td>130</td>
<td>Wall-mount kit (supplied with boiler) — wall mount bracket and hardware</td>
<td>383-700-119</td>
</tr>
<tr>
<td></td>
<td>Condensate trap kit (supplied with boiler) — condensate trap assembly and flexible line</td>
<td>560-907-722</td>
</tr>
</tbody>
</table>

CONDENSATE HANDLING ACCESSORIES

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>Condensate neutralizer kit</td>
<td>383-500-631</td>
</tr>
</tbody>
</table>

VENT/AIR PARTS AND KITS (POLYPROPYLENE PIPE)

available from M&G Simpson-Duravent ONLY

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>M&G Simpson-Duravent PolyPro SIDEWALL concentric vent/air kit (color: white)</td>
<td>24PPS-HK</td>
</tr>
<tr>
<td></td>
<td>2" polypropylene pipe</td>
<td>24PPS-HK</td>
</tr>
<tr>
<td></td>
<td>3" polypropylene pipe</td>
<td>35PPS-HK</td>
</tr>
<tr>
<td>210</td>
<td>M&G Simpson-Duravent PolyPro VERTICAL concentric vent/air kit, color = black (VK suffix) or terra cotta (TC suffix)</td>
<td>24PPS-VK</td>
</tr>
<tr>
<td></td>
<td>2" polypropylene pipe</td>
<td>24PPS-VK</td>
</tr>
<tr>
<td></td>
<td>3" polypropylene pipe</td>
<td>35PPS-VK</td>
</tr>
<tr>
<td>220</td>
<td>M&G Simpson-Duravent PolyPro SIDEWALL separate air and vent pipes</td>
<td>2PPS-HTP</td>
</tr>
<tr>
<td></td>
<td>2" polypropylene pipe</td>
<td>2PPS-HTP</td>
</tr>
<tr>
<td></td>
<td>3" polypropylene pipe</td>
<td>3PPS-HTP</td>
</tr>
</tbody>
</table>

VENT/AIR PARTS AND KITS (STAINLESS STEEL)

available from Weil-McLain

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Weil-McLain sidewall vent/air cap termination kit for PVC vent and air pipes</td>
<td>383-500-397</td>
</tr>
<tr>
<td></td>
<td>Includes W-M sidewall vent/air termination cap, inside and outside cover plates, and mounting hardware; openings are sized for 3" PVC pipe (requires field-installed 3 x 2 adapter if using 2" vent/air pipes)</td>
<td>383-500-397</td>
</tr>
</tbody>
</table>

VENT/AIR PARTS AND KITS (STAINLESS STEEL)

available from Weil-McLain

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>Weil-McLain sidewall vent/air cap termination kit for AL29-4C vent pipe and PVC air pipe</td>
<td>382-200-430</td>
</tr>
<tr>
<td></td>
<td>Includes W-M sidewall vent/air termination cap, inside and outside cover plates, and mounting hardware; openings are sized for 3" PVC pipe (requires field-installed 3 x 2 adapter if using 2" vent/air pipes)</td>
<td>382-200-430</td>
</tr>
</tbody>
</table>

VENT/AIR PARTS AND KITS (STAINLESS STEEL)

available from Centrotherm Eco Systems ONLY

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>Centrotherm INNOFLUE SIDEWALL concentric vent/air kit</td>
<td>ICWT3452</td>
</tr>
<tr>
<td></td>
<td>3" polypropylene pipe</td>
<td>ICWT3452</td>
</tr>
<tr>
<td></td>
<td>2" stainless steel pipe</td>
<td>ICWS2413</td>
</tr>
<tr>
<td></td>
<td>3" stainless steel pipe</td>
<td>ICWS3513</td>
</tr>
<tr>
<td>240</td>
<td>Centrotherm INNOFLUE VERTICAL concentric vent/air kit</td>
<td>ICRT2439</td>
</tr>
<tr>
<td></td>
<td>2" polypropylene pipe</td>
<td>ICRT2439</td>
</tr>
<tr>
<td></td>
<td>3" polypropylene pipe</td>
<td>ICRT3539</td>
</tr>
</tbody>
</table>

Go to www.weil-mclain.com to locate Weil-McLain distributors

Part number 550-142-120/1113
Replacement parts (continued)

Figure 124 Jacket parts — **WM97+70/110/155** (see Figure 125, page 121 for illustration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Description / contents</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>70 / 110</td>
</tr>
<tr>
<td>100</td>
<td>Front door</td>
<td>Front door, seals, logo, and labels</td>
<td>383-700-116</td>
</tr>
<tr>
<td>110</td>
<td>Front door to jacket seals</td>
<td>Seals for front door to jacket</td>
<td>383-700-117</td>
</tr>
<tr>
<td>120</td>
<td>Wall-mount bracket (wall side)</td>
<td>Bracket and hardware</td>
<td>383-700-118</td>
</tr>
<tr>
<td>130</td>
<td>Wall-mount bracket (boiler side)</td>
<td>Bracket and hardware</td>
<td>383-700-119</td>
</tr>
<tr>
<td>140</td>
<td>Gaskets - upper panel to cabinet</td>
<td>Gaskets - top panel to cabinet (riveted top)</td>
<td>383-700-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gaskets - top panel to cabinet (screwed top)</td>
<td>383-700-188</td>
</tr>
<tr>
<td>150</td>
<td>Gasket - heat exchanger to bottom panel</td>
<td>Gasket - condensate trap to bottom panel</td>
<td>383-700-121</td>
</tr>
<tr>
<td>160</td>
<td>Door latch</td>
<td>Latch and hardware</td>
<td>383-700-122</td>
</tr>
<tr>
<td>170</td>
<td>Gasket internal flue pipe to adapter</td>
<td>Gasket fits inner diameter of boiler flue pipe</td>
<td>590-318-051</td>
</tr>
<tr>
<td>180</td>
<td>Flue pipe adapter</td>
<td>Top flue adapter with internal gasket</td>
<td>560-907-719</td>
</tr>
<tr>
<td>190</td>
<td>Boiler flue pipe</td>
<td>Internal flue pipe and gasket</td>
<td>560-907-720</td>
</tr>
<tr>
<td>200</td>
<td>Air inlet adapter</td>
<td>Top air inlet adapter with internal gasket</td>
<td>560-907-718</td>
</tr>
<tr>
<td>210</td>
<td>Gasket - pipe adapter to cabinet</td>
<td>Gasket - flue adapter to cabinet</td>
<td>590-300-031</td>
</tr>
<tr>
<td>220</td>
<td>Gasket - pipe adapter to system pipe</td>
<td>Gasket fits inner diameter of top adapter</td>
<td>590-318-052</td>
</tr>
<tr>
<td>230</td>
<td>Front door to display seal</td>
<td>One seal (attached to control housing)</td>
<td>590-300-028</td>
</tr>
<tr>
<td>240</td>
<td>Jacket bottom access panel kit</td>
<td>Jacket access panel, gasket (item 250) and screws</td>
<td>383-700-204</td>
</tr>
<tr>
<td>250</td>
<td>Bottom access panel gasket</td>
<td>Gasket only</td>
<td>590-318-059</td>
</tr>
<tr>
<td>260</td>
<td>Aqua Logic (CWH) wire harness opening plugs (not shown)</td>
<td>One plug</td>
<td>561-444-190</td>
</tr>
</tbody>
</table>
Replacement parts (continued)

Figure 125 Jacket assembly — **WM97+70/110/155** (see Figure 124, page 120 for part numbers)
Replacement parts (continued)

Figure 126 Heat exchanger parts **WM97+70/110** (see Figure 127, page 123 for illustration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Heat exchanger</td>
<td>319-100-000</td>
</tr>
<tr>
<td>105</td>
<td>Heat exchanger with condensate dish, assembled (includes items 100, 120, 130 and 140)</td>
<td>383-700-175</td>
</tr>
<tr>
<td>110</td>
<td>Heat exchanger, condensate dish, cover plate, burner, igniter, sight glass, refractory, water sensors, gaskets, silicone, and hardware (includes items 120 through 240)</td>
<td>383-700-101</td>
</tr>
<tr>
<td>120</td>
<td>Condensate dish, gaskets, and hardware</td>
<td>383-700-102</td>
</tr>
<tr>
<td>130</td>
<td>Gasket to seal heat exchanger to condensate dish</td>
<td>383-700-103</td>
</tr>
<tr>
<td>140</td>
<td>Gasket to seal condensate dish to internal flue pipe</td>
<td>383-700-104</td>
</tr>
<tr>
<td>150</td>
<td>Refractory insulation & silicone sealant</td>
<td>383-700-105</td>
</tr>
<tr>
<td>160</td>
<td>Heat exchanger cover plate, refractory, silicone, and gaskets</td>
<td>383-700-108</td>
</tr>
<tr>
<td>170</td>
<td>Cover plate gasket (exchanger to gasket)</td>
<td>383-700-109</td>
</tr>
<tr>
<td>180</td>
<td>Sight glass kit (bracket, glass, gaskets, and hardware) (includes items 190 and 200)</td>
<td>383-700-185</td>
</tr>
<tr>
<td>190</td>
<td>Sight glass</td>
<td>591-419-202</td>
</tr>
<tr>
<td>200</td>
<td>Sight glass gaskets, upper and lower</td>
<td>383-700-112</td>
</tr>
<tr>
<td>210</td>
<td>Igniter kit (igniter, gasket and screws)</td>
<td>383-700-113</td>
</tr>
<tr>
<td>220</td>
<td>Igniter to cover plate gasket</td>
<td>590-300-034</td>
</tr>
<tr>
<td>240</td>
<td>Burner, gasket, and hardware (includes item 250)</td>
<td>383-700-106</td>
</tr>
<tr>
<td>250</td>
<td>Burner gasket</td>
<td>383-700-107</td>
</tr>
<tr>
<td>260</td>
<td>Heat exchanger water temperature sensor (one sensor for either boiler inlet or outlet water temperature)</td>
<td>511-724-296</td>
</tr>
</tbody>
</table>
Replacement parts (continued)

Figure 127 WM97+ 70/110 heat exchanger assembly (see Figure 126, page 122 for part numbers)
Replacement parts (continued)

Figure 128 Heat exchanger parts WM97+155 (see Figure 129, page 125 for illustration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Heat exchanger</td>
<td>383-700-197</td>
</tr>
<tr>
<td>105</td>
<td>Heat exchanger with condensate dish, assembled (includes items 100, 160, 170 and 180)</td>
<td>383-700-198</td>
</tr>
<tr>
<td>110</td>
<td>Heat exchanger, condensate dish, cover plate, burner, igniter, sight glass, refractory, water sensors, gaskets, silicone, and hardware (includes items 120,)</td>
<td>383-700-180</td>
</tr>
<tr>
<td>120</td>
<td>Cover plate/heat exchanger gasket</td>
<td>590-318-054</td>
</tr>
<tr>
<td>130</td>
<td>Boiler inlet temperature sensor</td>
<td>511-724-296</td>
</tr>
<tr>
<td>140</td>
<td>Boiler outlet temperature sensor (same as item 130)</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Blower gasket</td>
<td>590-318-006</td>
</tr>
<tr>
<td>160</td>
<td>Condensate dish and hardware</td>
<td>383-700-181</td>
</tr>
<tr>
<td>170</td>
<td>Gasket to seal heat exchanger to condensate dish</td>
<td>590-300-039</td>
</tr>
<tr>
<td>180</td>
<td>Gasket to seal condensate dish to internal flue pipe</td>
<td>383-700-104</td>
</tr>
<tr>
<td>190</td>
<td>Heat exchanger cover plate, refractory and gaskets (includes items 200, 230, 260, 290 and 300)</td>
<td>383-700-184</td>
</tr>
<tr>
<td>200</td>
<td>Refractory insulation & silicone sealant</td>
<td>383-700-182</td>
</tr>
<tr>
<td>210</td>
<td>Burner, gasket, and hardware (includes item 220)</td>
<td>383-700-183</td>
</tr>
<tr>
<td>220</td>
<td>Burner gasket</td>
<td>590-318-055</td>
</tr>
<tr>
<td>230</td>
<td>Burner access cover, gasket and hardware (includes item 240)</td>
<td>383-700-202</td>
</tr>
<tr>
<td>240</td>
<td>Burner access cover gasket</td>
<td>590-318-053</td>
</tr>
<tr>
<td>250</td>
<td>Igniter kit (igniter, gasket and screws) (includes item 260)</td>
<td>383-700-187</td>
</tr>
<tr>
<td>260</td>
<td>Igniter gasket</td>
<td>383-700-107</td>
</tr>
<tr>
<td>270</td>
<td>Sight glass kit (bracket, glass, gaskets, and hardware) (includes items 280 and 290)</td>
<td>383-700-185</td>
</tr>
<tr>
<td>280</td>
<td>Sight glass</td>
<td>591-419-202</td>
</tr>
<tr>
<td>290</td>
<td>Sight glass gaskets, upper and lower</td>
<td>383-700-112</td>
</tr>
</tbody>
</table>
Replacement parts (continued)

Figure 129 WM97+155 heat exchanger assembly (see Figure 128, page 124 for part numbers)
Replacement parts

(continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Description / contents</th>
<th>Part Number</th>
<th>Model 70</th>
<th>Model 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Upper water pipes</td>
<td>Upper pipe assembly and gaskets (1 pump, 2 water)</td>
<td>383-700-144</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>110</td>
<td>Lower water pipes</td>
<td>Lower pipe assembly and gaskets (1 pump, 2 water)</td>
<td>383-700-145</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>120</td>
<td>Water gaskets</td>
<td>Seal pipe to heat exchanger or upper pipe to lower pipe</td>
<td>590-300-036</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>130</td>
<td>Pump gasket</td>
<td>Gasket to seal pump flange to pipe flange</td>
<td>590-317-543</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>140</td>
<td>Expansion tank</td>
<td>12 Liter (3.2 galons) expansion tank - pre-charged to 12 psi</td>
<td>383-700-148</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>150</td>
<td>Expansion tank line</td>
<td>Flared fitting stainless steel flex line</td>
<td>560-900-022</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>160</td>
<td>Expansion tank shutoff valve</td>
<td>Female NPT to flare manual ball valve</td>
<td>511-246-399</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>170</td>
<td>Expansion tank adapter</td>
<td>Female NPT to male flare</td>
<td>562-302-577</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>180</td>
<td>WM97+70 boiler circulator</td>
<td>Taco 007 & gaskets</td>
<td>383-700-152</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>190</td>
<td>WM97+70 boiler circulator cartridge</td>
<td>Replacement cartridge for wet-rotor 007 circulator</td>
<td>511-405-142</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>200</td>
<td>WM97+110 boiler circulator</td>
<td>Taco 0015 & gaskets</td>
<td>383-700-153</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>210</td>
<td>WM97+110 boiler circulator cartridge</td>
<td>Replacement cartridge for wet-rotor 0015 circulator</td>
<td>511-405-143</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>220</td>
<td>Relief valve</td>
<td>30 PSIG relief valve — shipped loose for field installation</td>
<td>383-500-095</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>230</td>
<td>Pressure & temperature gauge</td>
<td>Shipped loose for field installation</td>
<td>380-000-000</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>240</td>
<td>Air inlet silencer</td>
<td>Silencer</td>
<td>383-700-155</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>250</td>
<td>Silencer o-ring</td>
<td>O-ring</td>
<td>590-318-049</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>260</td>
<td>Blower</td>
<td>Blower & clip</td>
<td>383-700-157</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>265</td>
<td>Blower retainer clip</td>
<td>Clip</td>
<td>562-650-115</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>270</td>
<td>Reference tube</td>
<td>Tube to connect blower to gas valve</td>
<td>590-300-001</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>280</td>
<td>Valve/venturi assembly</td>
<td>Gas valve, venturi (027), gasket, o-ring, clip, and screws</td>
<td>383-700-159</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas valve, venturi (040), gasket, o-ring, clip, and screws</td>
<td>383-700-160</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>285</td>
<td>Gas valve retainer clip</td>
<td>Clip</td>
<td>562-650-116</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>290</td>
<td>Gas valve adapter block</td>
<td>Threaded block, o-ring, and screws</td>
<td>563-910-031</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>295</td>
<td>Gas valve outlet o-ring</td>
<td>O-ring</td>
<td>590-318-045</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>298</td>
<td>Propane orifice</td>
<td>Boilers converted to propane ONLY — available only with propane conversion kit — see Figure 122, page 118 for information</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>300</td>
<td>Gas flex line adapter</td>
<td>NPT to flare adapter</td>
<td>562-302-576</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>310</td>
<td>Gas flex line</td>
<td>Gas line, seal, and hardware</td>
<td>383-700-163</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>320</td>
<td>Gas flex line gasket</td>
<td>Gasket gas flex line to cabinet</td>
<td>590-300-027</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>330</td>
<td>Gasket - lower pipe</td>
<td>Gasket - lower pipe to cabinet</td>
<td>590-300-037</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>340</td>
<td>Gasket - upper pipe</td>
<td>Gasket - upper pipe to cabinet</td>
<td>590-318-050</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>350</td>
<td>Low water cutoff</td>
<td>Low water cutoff</td>
<td>571-100-006</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Replacement parts (continued)

Figure 131 Piping components for WM97+70/110 (see Figure 130, page 126 for part numbers)
Replacement parts (continued)

Figure 132 Piping components for WM97+155 (see Figure 133, page 129 for illustration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Description / contents</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Supply manifold</td>
<td>Boiler supply pipe and hardware</td>
<td>383-700-193</td>
</tr>
<tr>
<td>105</td>
<td>Supply and return gaskets</td>
<td>Boiler supply and return connection seals</td>
<td>590-300-036</td>
</tr>
<tr>
<td>110</td>
<td>Upper return manifold</td>
<td>Boiler return pipe and hardware</td>
<td>383-700-192</td>
</tr>
<tr>
<td>120</td>
<td>Lower return manifold</td>
<td>Lower return manifold and hardware</td>
<td>383-700-191</td>
</tr>
<tr>
<td>130</td>
<td>Water line sealing grommets</td>
<td>Grommet</td>
<td>562-248-740</td>
</tr>
<tr>
<td>150</td>
<td>Boiler circulator</td>
<td>Taco 0015 (with rotated flange)</td>
<td>383-700-194</td>
</tr>
<tr>
<td>160</td>
<td>Circulator cartridge</td>
<td>Taco replacement cartridge for Model 0015 wet rotor circulator</td>
<td>511-405-143</td>
</tr>
<tr>
<td>170</td>
<td>Circulator gasket</td>
<td>Taco flange gasket</td>
<td>590-317-543</td>
</tr>
<tr>
<td>180</td>
<td>Internal primary/secondary by-pass valve</td>
<td>Ball valve, compression fitting connection</td>
<td>511-246-400</td>
</tr>
<tr>
<td>190</td>
<td>Low water cut-off</td>
<td>Low water cut-off</td>
<td>571-100-006</td>
</tr>
<tr>
<td>200</td>
<td>Gas valve</td>
<td>Gas valve, venturi, gasket and hardware</td>
<td>383-700-196</td>
</tr>
<tr>
<td>220</td>
<td>Propane orifice, if used</td>
<td>In propane conversion kit (see Figure 122, page 118 for number)</td>
<td>—</td>
</tr>
<tr>
<td>230</td>
<td>Gas valve adapter block</td>
<td>Threaded block, o-ring and screws</td>
<td>563-910-031</td>
</tr>
<tr>
<td>240</td>
<td>Gas flex line</td>
<td>Gas pipe and hardware</td>
<td>383-700-163</td>
</tr>
<tr>
<td>250</td>
<td>Gas pipe flange gasket</td>
<td>Gasket, gas flex line to cabinet</td>
<td>590-300-027</td>
</tr>
<tr>
<td>260</td>
<td>Blower</td>
<td>Blower</td>
<td>383-700-195</td>
</tr>
<tr>
<td>280</td>
<td>Inlet air silencer</td>
<td>Silencer with gasket and clip</td>
<td>383-700-203</td>
</tr>
<tr>
<td>300</td>
<td>Pressure & temperature gauge</td>
<td>Shipped loose for field installation</td>
<td>383-000-000</td>
</tr>
<tr>
<td>310</td>
<td>Relief valve</td>
<td>30 PSIG relief valve — shipped loose for field installation</td>
<td>383-500-095</td>
</tr>
<tr>
<td>320</td>
<td>Gas flex line adapter</td>
<td>NPT to flare adapter</td>
<td>562-302-571</td>
</tr>
</tbody>
</table>
Replacement parts (continued)

Figure 133 Piping components for WM97+155 (see Figure 132, page 128 for part numbers)
Replacement parts (continued)

Figure 134 Controls and electrical components — **WM97+70/110/155** (see Figure 135, page 131 for illustration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Description / contents</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Flue temperature sensor</td>
<td>One sensor</td>
<td>511-724-292</td>
</tr>
<tr>
<td>110</td>
<td>Outdoor temperature sensor</td>
<td>One sensor</td>
<td>510-312-218</td>
</tr>
<tr>
<td>120</td>
<td>Low water cutoff (not shown here — see Figure 130, page 126)</td>
<td>Low water cutoff</td>
<td>571-100-006</td>
</tr>
<tr>
<td>130</td>
<td>Transformer 120v/24v</td>
<td>50 Va transformer</td>
<td>511-802-015</td>
</tr>
<tr>
<td>140</td>
<td>Wire harness — line voltage, 12-pin connector (not shown)</td>
<td>Wire harness with terminal strips (WM97+70 or 110)</td>
<td>591-391-969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wire harness with terminal strips (WM97+155)</td>
<td>591-391-993</td>
</tr>
<tr>
<td>150</td>
<td>Wire harness — low voltage, 16-pin connector (not shown)</td>
<td>Wire harness (WM97+70 or 110)</td>
<td>591-391-968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wire harness (WM97+155)</td>
<td>591-391-992</td>
</tr>
<tr>
<td>160</td>
<td>Wire harness — low voltage, 22-pin connector (not shown)</td>
<td>Wire harness with terminal strips</td>
<td>591-391-967</td>
</tr>
<tr>
<td>165</td>
<td>Ignition cable (not shown)</td>
<td>Ignition cable (WM97+70 or 110)</td>
<td>383-500-619</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ignition cable (WM97+155)</td>
<td>591-391-997</td>
</tr>
<tr>
<td>170</td>
<td>Control assembly</td>
<td>Ignition control, user display, pump control, wire harnesses, plastic, gasket, label</td>
<td>383-700-189</td>
</tr>
<tr>
<td>180</td>
<td>Electrical enclosure</td>
<td>Plastic electrical enclosure</td>
<td>595-000-033</td>
</tr>
<tr>
<td>190</td>
<td>Line voltage lid (left side)</td>
<td>Lid & label</td>
<td>383-700-173</td>
</tr>
<tr>
<td>200</td>
<td>Low voltage lid (right side)</td>
<td>Lid & label</td>
<td>383-700-174</td>
</tr>
<tr>
<td>210</td>
<td>On/off power switch</td>
<td></td>
<td>511-624-646</td>
</tr>
<tr>
<td>220</td>
<td>F1 - 3 amp, fast blow ato (5 fuses) (not shown here — see Figure 111, page 103)</td>
<td>5 Fuses</td>
<td>383-500-603</td>
</tr>
<tr>
<td>230</td>
<td>F2 - 12 amp, slow-blow ag (5 fuses) (not shown here — see Figure 111, page 103)</td>
<td>5 Fuses</td>
<td>383-500-604</td>
</tr>
<tr>
<td>240</td>
<td>Ground wire (not shown)</td>
<td>Wire harness ground, igniter to jacket</td>
<td>591-391-991</td>
</tr>
</tbody>
</table>
Replacement parts (continued)

Figure 135 Controls and electrical assemblies — **WM97+70/110/155** (see Figure 134, page 130 for part numbers)
Dimensions

Figure 136 Dimensional data — WM97+70/110/155 (all dimensions in inches)

1 Boiler supply tapping — 1” NPT (70/110) / 1¼” NPT (155)
2 Boiler return tapping — 1” NPT (70/110) / 1¼” NPT (155)
3 Control panel, with display and navigation buttons
4 Electrical entrance openings
5 Vent connection: 3” PVC
6 Pressure/temperature gauge (shipped loose)
 See Figure 6, page 12 for mounting details and instructions.
7 Gas connection (note 1) (manual gas valve
 shipped loose for field installation)
 See page 61 for details and instructions.
8 Drain valve (shipped loose)
 See Figure 6, page 12 for mounting details and instructions.
9 Condensate drain connection (also see item 14, below)
10 Air connection: 3” PVC
11 Relief valve (shipped loose)
 See page 37 for mounting details. Relief valve
 mounts on supply pipe off of supply tee and
 ¾” street elbow as shown.
12 Boiler drain line / DHW boiler water return
 line (if DHW tank is connected directly to the boiler)
 See Figure 8, page 13 for details and instructions for usage.
13 DHW boiler water supply line (if DHW tank is
 connected directly to the boiler)
 See Figure 8, page 13 for details and instructions for usage.
14 Condensate trap and flexible drain line
 (shipped loose)
 See page 60 for details and instructions. The
 condensate drain hose or pipe must connect to
 the flexible line supplied with the boiler to en-
 sure the trap assembly can be removed easily.
Ratings — WM97+ boilers

Figure 137 Ratings and engineering data — WM97+70/110/155

<table>
<thead>
<tr>
<th>Boiler Model</th>
<th>CSA Output / DOE Heating capacity</th>
<th>CSA Input</th>
<th>Net AHRI water rating</th>
<th>DOE Seasonal Efficiency</th>
<th>Boiler Water Content</th>
<th>Vent/Comb. Air Connection Diameter</th>
<th>% Input derate vs vent length (Values shown are at MAX vent/air pipe length — See Note 6)</th>
<th>Shipping Weight</th>
<th>Operating Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM97+</td>
<td>Btuh (Note 2)</td>
<td>Btuh (Note 5)</td>
<td>Btuh (Note 3)</td>
<td>AFUE, % (Note 1)</td>
<td>Gallons</td>
<td>Inches (Note 4)</td>
<td>Natural gas</td>
<td>Propane</td>
<td>Pounds</td>
</tr>
<tr>
<td>70-CT</td>
<td>65,000</td>
<td>70,000</td>
<td>57</td>
<td>95.2</td>
<td>2.8</td>
<td>3” PVC</td>
<td>12 %</td>
<td>5 %</td>
<td>162</td>
</tr>
<tr>
<td>110-CT</td>
<td>101,000</td>
<td>110,000</td>
<td>88</td>
<td>95.0</td>
<td>2.8</td>
<td>3” PVC</td>
<td>15 %</td>
<td>5 %</td>
<td>162</td>
</tr>
<tr>
<td>155-CT</td>
<td>143,000</td>
<td>155,000</td>
<td>124</td>
<td>95.1</td>
<td>3.4</td>
<td>3” PVC</td>
<td>N/A</td>
<td>5 %</td>
<td>162</td>
</tr>
</tbody>
</table>

Notes

1. As an Energy Star Partner, Weil-McLain has determined that WM97+ boilers meet the Energy Star guidelines for energy efficiency. NOTE: Adjusting boiler firing rate will affect AFUE rating.

2. Based on standard test procedures prescribed by the United States Department of Energy. Ratings also referred to as CSA Output. NOTE that only DOE Heating Capacity and AFUE are certified by AHRI. AFUE is also known as Annual Fuel Utilization Efficiency or Seasonal Efficiency.

3. Net AHRI ratings are based on net installed radiation of sufficient quantity for the requirements of the building and nothing need be added for normal piping and pickup. Ratings are based on a piping and pickup allowance of 1.15. An additional allowance should be made for unusual piping and pickup loads.

4. WM97+ boilers must be direct-vented. WM97+ boilers require special venting, consistent with Category IV boiler. Use only the vent materials and methods specified in this manual. WM97+70 or 110 vent/air pipes can be either 2” or 3” WM97+155 vent/air pipes must be 3”

5. All vent and air pipe elbows must be sweep elbows, NOT short-radius elbows.

6. Ratings shown are for sea level applications only. For altitudes from sea level to 5,500 feet above sea level, the WM97+ boiler requires no modifications and automatically derates itself by approximately 4% per 1000 feet above sea level.

THE OUTDOOR SENSOR SUPPLIED WITH THE BOILER MUST BE INSTALLED UNLESS EXEMPTED BELOW:

IMPORTANT

In accordance with Section 303 of the 2007 Energy Act, this boiler is equipped with a feature that saves energy by reducing the boiler water temperature as the heating load decreases. This feature is equipped with an override which is provided primarily to permit the use of an external energy management system that serves the same function.

THIS OVERRIDE MUST NOT BE USED UNLESS AT LEAST ONE OF THE FOLLOWING CONDITIONS IS TRUE:

- An external energy management system is installed that reduces the boiler water temperature as the heating load decreases.
- This boiler is not used for any space heating.
- This boiler is part of a modular or multiple boiler system having a total input of 300,000 BTU/hr or greater.
- This boiler is equipped with a tankless coil (not applicable to WM97+).
Ratings — Multiple WM97+ boilers

Figure 138 Ratings and engineering data — multiple WM97+ boilers

<table>
<thead>
<tr>
<th>Boilers in system Model</th>
<th>Total CSA Input</th>
<th>CSA Output / DOE Heating capacity</th>
<th>Boiler H.P.</th>
<th>Net water ratings</th>
<th>Manifolded combustion air duct size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input, MBH</td>
<td>Output, MBH</td>
<td>- MBH</td>
<td>Square inches</td>
<td></td>
</tr>
<tr>
<td>70 110 155</td>
<td>- Note 1</td>
<td>- Note 2</td>
<td>Figure 64, page 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>140</td>
<td>130</td>
<td>3.9</td>
<td>114</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>220</td>
<td>202</td>
<td>6.0</td>
<td>176</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>310</td>
<td>266</td>
<td>8.5</td>
<td>248</td>
<td>155</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>195</td>
<td>5.8</td>
<td>171</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>330</td>
<td>303</td>
<td>9.1</td>
<td>264</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>465</td>
<td>429</td>
<td>12.8</td>
<td>372</td>
<td>233</td>
</tr>
<tr>
<td>4</td>
<td>280</td>
<td>260</td>
<td>7.8</td>
<td>228</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>440</td>
<td>404</td>
<td>12.1</td>
<td>352</td>
<td>220</td>
</tr>
<tr>
<td>4</td>
<td>620</td>
<td>572</td>
<td>17.1</td>
<td>496</td>
<td>310</td>
</tr>
<tr>
<td>5</td>
<td>350</td>
<td>325</td>
<td>9.7</td>
<td>285</td>
<td>175</td>
</tr>
<tr>
<td>5</td>
<td>550</td>
<td>505</td>
<td>15.1</td>
<td>440</td>
<td>275</td>
</tr>
<tr>
<td>5</td>
<td>775</td>
<td>715</td>
<td>21.4</td>
<td>620</td>
<td>388</td>
</tr>
<tr>
<td>6</td>
<td>420</td>
<td>390</td>
<td>11.7</td>
<td>342</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>660</td>
<td>606</td>
<td>18.1</td>
<td>528</td>
<td>330</td>
</tr>
<tr>
<td>6</td>
<td>930</td>
<td>858</td>
<td>25.6</td>
<td>744</td>
<td>465</td>
</tr>
<tr>
<td>7</td>
<td>490</td>
<td>455</td>
<td>13.6</td>
<td>399</td>
<td>245</td>
</tr>
<tr>
<td>7</td>
<td>770</td>
<td>707</td>
<td>21.1</td>
<td>616</td>
<td>385</td>
</tr>
<tr>
<td>7</td>
<td>1085</td>
<td>1001</td>
<td>29.9</td>
<td>868</td>
<td>543</td>
</tr>
<tr>
<td>8</td>
<td>560</td>
<td>520</td>
<td>15.5</td>
<td>456</td>
<td>280</td>
</tr>
<tr>
<td>8</td>
<td>880</td>
<td>808</td>
<td>24.1</td>
<td>704</td>
<td>440</td>
</tr>
<tr>
<td>8</td>
<td>1240</td>
<td>1144</td>
<td>34.2</td>
<td>992</td>
<td>620</td>
</tr>
</tbody>
</table>

Notes

1. Based on standard test procedures outlined by DOE for individual boilers.

2. Net water ratings are based on piping and pickup allowance of 1.15. Consult Weil-McLain Technical Services for other allowances.

3. Total amp requirement includes up to three circulators, not exceeding 2.2 amps per circulator.

4. Operating weight is the total weight of the boiler, including water.

5. WM97+70 or 110 vent/air pipes can be either 2” or 3” pipe. WM97+155 vent/air pipes must be 3”. All of the boilers will automatically de-rate as vent/air pipe length increases, due to the pressure loss through the piping. See Figure 137, page 133 for details. All WM97+ installations require a separate vent pipe and termination for each boiler. Vent piping cannot be manifolded. Install and terminate vents as described in vent/air installation instructions in this manual. Combustion air piping can be individually piped or manifolded. See Figure 64, page 56, for manifolded air piping.

<table>
<thead>
<tr>
<th>Boiler Model</th>
<th>Shipping weight</th>
<th>Operating weight</th>
<th>Water content</th>
<th>Water flow rate per boiler</th>
<th>Vent/air pipe size: (Provide a separate vent for each boiler)</th>
<th>Electrical service required</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM97+</td>
<td></td>
<td></td>
<td></td>
<td>GPM @ 20°F rise</td>
<td>GPM @ 40°F rise</td>
<td>Amps per boiler</td>
</tr>
<tr>
<td>Pounds per boiler</td>
<td>Pounds per boiler</td>
<td>Gallons per boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>136</td>
<td>140</td>
<td>2.8</td>
<td>6.5</td>
<td>3.3</td>
<td>2” or 3”</td>
</tr>
<tr>
<td>110</td>
<td>136</td>
<td>140</td>
<td>2.8</td>
<td>10.0</td>
<td>5.0</td>
<td>2” or 3”</td>
</tr>
<tr>
<td>155</td>
<td>162</td>
<td>150</td>
<td>3.4</td>
<td>14.3</td>
<td>7.2</td>
<td>3”</td>
</tr>
</tbody>
</table>

Note 4 Note 5 Note 3
Installation and Service Certificate

Boiler Start-Up Data

<table>
<thead>
<tr>
<th>Boiler Model / Series</th>
<th>WM97+ ______ / Series ______</th>
<th>Date installed</th>
<th>CO₂ @: High fire ______%</th>
<th>Low fire ______%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Number</td>
<td>FUEL: Natural _____ LP _____</td>
<td>Btu Input</td>
<td>CO @: High fire ______ ppm</td>
<td>Low fire ______ ppm</td>
</tr>
<tr>
<td>Flame signal on control display at high fire</td>
<td>Flame signal on control display at low fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was orifice changed?</td>
<td>Was gas valve throttle adjusted?</td>
<td>Natural gas input rate measured HIGH_______ CFH / LOW_______ CFH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WM97+ control SET-UP DATA

<table>
<thead>
<tr>
<th>BOILER Settings</th>
<th>HEAT Settings</th>
<th>DHW Settings (if installed)</th>
<th>Aqua Logic (CWH) Settings (if installed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Model</td>
<td>WM97+ ______</td>
<td>System Type</td>
<td>DHW</td>
</tr>
<tr>
<td>High Altitude</td>
<td>Yes _____ NO _____</td>
<td>Boiler Circ Speed</td>
<td>HIGH_MED_LOW_OFF ____</td>
</tr>
<tr>
<td>Manual Reset Temp</td>
<td>°F</td>
<td>Max Supply</td>
<td>°F</td>
</tr>
<tr>
<td>WWSD Temp</td>
<td>°F</td>
<td>Min Supply</td>
<td>°F</td>
</tr>
<tr>
<td>Adjust Outdoor</td>
<td>°F</td>
<td>Max Outdoor</td>
<td>°F</td>
</tr>
<tr>
<td>Circulator Exercising</td>
<td></td>
<td>Min Outdoor</td>
<td>°F</td>
</tr>
<tr>
<td>Circulator 1: On ____ Off ____</td>
<td>Modulate On Diff</td>
<td>°F</td>
<td>Modulate On Diff</td>
</tr>
<tr>
<td>Circulator 2: On ____ Off ____</td>
<td>Modulate Off Diff</td>
<td>°F</td>
<td>Modulate Off Diff</td>
</tr>
<tr>
<td>Circulator 3: On ____ Off ____</td>
<td>Min On Time</td>
<td>minutes</td>
<td>Max On Time</td>
</tr>
<tr>
<td>Boiler circ: On ____ Off ____</td>
<td>Boost Interval</td>
<td>minutes</td>
<td></td>
</tr>
<tr>
<td>Freeze Protection</td>
<td></td>
<td>Pre-pump Time: seconds</td>
<td>Pre-pump Time: seconds</td>
</tr>
<tr>
<td>Circulator 1: On ____ Off ____</td>
<td>Post-pump Time: seconds</td>
<td>Post-pump Time: seconds</td>
<td>Post-pump Time: seconds</td>
</tr>
<tr>
<td>Circulator 2: On ____ Off ____</td>
<td>Maximum Rate</td>
<td>RPM</td>
<td>Maximum Rate</td>
</tr>
<tr>
<td>Circulator 3: On ____ Off ____</td>
<td>Minimum Rate</td>
<td>RPM</td>
<td>Minimum Rate</td>
</tr>
<tr>
<td>Boiler circ: On ____ Off ____</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CERTIFIED THAT:

- Installation instructions have been followed.
- Check-out sequence has been performed.
- Above information is certified to be correct.
- Information received and left with owner/maintenance person.

Installer

(Company) (Address)

(Phone) (Installer’s Signature)
WM97+ Gas Boiler Data Collection Sheet

<table>
<thead>
<tr>
<th>Customer Info:</th>
<th>Maintenance Info:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact:</td>
<td>Name:</td>
</tr>
<tr>
<td>Contractor:</td>
<td>Phone:</td>
</tr>
<tr>
<td>Job name:</td>
<td>Model:</td>
</tr>
<tr>
<td>City, state:</td>
<td>CP#:</td>
</tr>
<tr>
<td>Distributor:</td>
<td>Installed:</td>
</tr>
</tbody>
</table>

System Components:

- **Near boiler pipe size:** Top: ___, Bottom (DHW): ___, HEATING: HIGH __, LOW __, MED __, OFF __.
- **Boiler circulator speed:** DHW: HIGH __, LOW __, MED __, OFF __.
- **DHW tank (yes/no):**
- **DHW direct/system:**
- **DHW model:**
- **DHW pipe size:**
- **DHW circulator model:**
- **Is there air in system?:**
- **CWH installed (yes/no):**

Diagnostic Errors:

- **Control fault:**
- **Ignition retries:**
- **Manual reset CNT:**
- **Auto reset CNT:**

Software Versions:

- **Display:**
- **Main micro:**
- **Second micro:**

Lockout History

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>Status:</td>
<td>Status:</td>
</tr>
<tr>
<td>If yes-description:</td>
<td>If yes-description:</td>
<td>If yes-description:</td>
</tr>
<tr>
<td>Auto reset:</td>
<td>Auto reset:</td>
<td>Auto reset:</td>
</tr>
<tr>
<td>If yes-description:</td>
<td>If yes-description:</td>
<td>If yes-description:</td>
</tr>
</tbody>
</table>

Temperatures:

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>Status:</td>
<td>Status:</td>
</tr>
<tr>
<td>Boiler out 1:</td>
<td>Boiler out 1:</td>
<td>Boiler out 1:</td>
</tr>
<tr>
<td>Boiler out 2:</td>
<td>Boiler out 2:</td>
<td>Boiler out 2:</td>
</tr>
<tr>
<td>Boiler in 1:</td>
<td>Boiler in 1:</td>
<td>Boiler in 1:</td>
</tr>
<tr>
<td>Flue 1:</td>
<td>Flue 1:</td>
<td>Flue 1:</td>
</tr>
<tr>
<td>Flue 2:</td>
<td>Flue 2:</td>
<td>Flue 2:</td>
</tr>
<tr>
<td>Outdoor:</td>
<td>Outdoor:</td>
<td>Outdoor:</td>
</tr>
<tr>
<td>CWH Tank TOP:</td>
<td>CWH Tank TOP:</td>
<td>CWH Tank TOP:</td>
</tr>
<tr>
<td>CWH Tank BTM:</td>
<td>CWH Tank BTM:</td>
<td>CWH Tank BTM:</td>
</tr>
</tbody>
</table>

Inputs:

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>Status:</td>
<td>Status:</td>
</tr>
<tr>
<td>Input 1:</td>
<td>Input 1:</td>
<td>Input 1:</td>
</tr>
<tr>
<td>Input 2:</td>
<td>Input 2:</td>
<td>Input 2:</td>
</tr>
<tr>
<td>Input 3:</td>
<td>Input 3:</td>
<td>Input 3:</td>
</tr>
<tr>
<td>Auto limit:</td>
<td>Auto limit:</td>
<td>Auto limit:</td>
</tr>
<tr>
<td>Low WTR Cutoff:</td>
<td>Low WTR Cutoff:</td>
<td>Low WTR Cutoff:</td>
</tr>
<tr>
<td>Blower tach:</td>
<td>Blower tach:</td>
<td>Blower tach:</td>
</tr>
<tr>
<td>Flame signal:</td>
<td>Flame signal:</td>
<td>Flame signal:</td>
</tr>
</tbody>
</table>

Outputs:

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>Status:</td>
<td>Status:</td>
</tr>
<tr>
<td>Gas valve:</td>
<td>Gas valve:</td>
<td>Gas valve:</td>
</tr>
<tr>
<td>Boiler circulator:</td>
<td>Boiler circulator:</td>
<td>Boiler circulator:</td>
</tr>
<tr>
<td>Circulator 1:</td>
<td>Circulator 1:</td>
<td>Circulator 1:</td>
</tr>
<tr>
<td>Circulator 2:</td>
<td>Circulator 2:</td>
<td>Circulator 2:</td>
</tr>
<tr>
<td>Circulator 3:</td>
<td>Circulator 3:</td>
<td>Circulator 3:</td>
</tr>
<tr>
<td>Blower signal:</td>
<td>Blower signal:</td>
<td>Blower signal:</td>
</tr>
<tr>
<td>Alarm:</td>
<td>Alarm:</td>
<td>Alarm:</td>
</tr>
</tbody>
</table>

Boiler/System Piping Details (Please Sketch)