Beginning Serial Number: CP7531680

Series 3
Gas-Fired Water Boilers

Boiler Manual

- Installation
- Maintenance
- Startup
- Parts

*Blower cover on sizes CGi 25-5 only

WARNING

DO NOT USE BOILER DURING CONSTRUCTION unless you provide dust-free air to the boiler area or follow the requirements given on page 9. Failure to comply could result in severe personal injury, death or substantial property damage.

WARNING

This manual must only be used by a qualified heating installer/service technician. Before installing, read all instructions, including this manual, and any related supplements. Perform steps in the order given. Failure to comply could result in severe personal injury, death or substantial property damage.

Part Number 550-142-902/1016
How it works . . .

1. Control module
 The control module responds to signals from the room thermostat, air pressure switch and boiler limit circuit to operate the boiler circulator, pilot burner, gas valve and inducer. When room thermostat calls for heat, the control module starts the system circulator and inducer.
 The control module runs the inducer long enough to purge the boiler flue passages, then opens the pilot valve and activates pilot ignition spark.
 For natural gas, the control module allows up to 15 seconds to establish pilot flame. If flame is not sensed within 15 seconds, the control module will turn off the gas valve, flash the Flame light, and then enter a 15-second postpurge. The control module will then start a new cycle. This will continue indefinitely until pilot flame is established or power is interrupted. Once pilot flame is proven, the control module opens the gas valve to allow main burner flame.
 When the room thermostat is satisfied, the control module turns off the gas valve, operates the inducer for a 15-second postpurge and waits for the next heat call.
 The control module indicator lights show normal sequence when the lights are on steady. When a problem occurs, the control module flashes combinations of lights to indicate the most likely reason for the problem (see page 49).

2. Transformer
 The control transformer reduces line voltage to 24 volts for the gas valve and limit circuit.

3. Inducer
 The inducer pulls flue gases through the boiler, causing air to be pulled in through the boiler air openings. The inducer pushes the flue gases through the vent pipe as well.

4. Air pressure switch
 The air pressure switch signals the control module, telling the control module whether the inducer is working correctly or the vent is blocked.

5. Water temperature sensor
 The water temperature sensor provides a signal to the control module to turn off the gas valve if the temperature in the boiler goes above its setting or if a low water condition is sensed. (The circulator will continue to run as long as there is a call for heat.)

6. Boiler circulator
 The boiler circulator circulates water through the external (system) piping. The circulator is shipped loose, and can be mounted on either the boiler supply or return piping. The factory-installed circulator wiring harness provides ample length for either location. NOTE — The control module provides a pump exercising routine. If the boiler is not operated for 30 days, the control module will power the circulator for 30 seconds, then turn off.

Other boiler components:

- a supply to system
- b return from system
- c stainless steel burners
- d flue outlet
- e gas valve
- f pressure/temperature gauge
- g relief valve
- h air vent connection
- i flame rollout thermal fuse element (TFE)
- j burner shield
- k pilot burner and bracket
- l gas manifold
- m cast iron boiler sections
- n flue collector
- o junction box
CGi Gas-Fired Induced-Draft Water Boiler
Hazard definitions

The following defined terms are used throughout this manual to bring attention to the presence of hazards of various risk levels or to important information concerning the life of the product.

⚠️ **DANGER**
Indicates presence of hazards that will cause severe personal injury, death or substantial property damage.

⚠️ **WARNING**
Indicates presence of hazards that can cause severe personal injury, death or substantial property damage.

⚠️ **CAUTION**
Indicates presence of hazards that will or can cause minor personal injury or property damage.

⚠️ **NOTICE**
Indicates special instructions on installation, operation or maintenance that are important but not related to personal injury or property damage.
Please read before proceeding

Installer

- **WARNING**
 - Read all instructions before installing. Follow all instructions in proper order to prevent personal injury or death.
 - Consider piping and installation when determining boiler location.
 - Any claims for damage or shortage in shipment must be filed immediately against the transportation company by the consignee.

- **WARNING**
 - The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on this manual. Failure to comply could result in severe personal injury.

- **NOTICE**
 - When calling or writing about the boiler— Please have the boiler model number from the boiler rating label and the CP number from the boiler jacket. You may list the CP number in the space provided on the Installation and service certificate found on page 36.

User

- **WARNING**
 - Failure to adhere to the guidelines on this page can result in severe personal injury, death or substantial property damage.

When servicing boiler —

- To avoid electric shock, disconnect electrical supply before performing maintenance.
- To avoid severe burns, allow boiler to cool before performing maintenance.

Boiler operation —

- Do not block flow of combustion or ventilation air to boiler.
- Should overheating occur or gas supply fail to shut off, do not turn off or disconnect electrical supply to circulator. Instead, shut off the gas supply at a location external to the appliance.
- Do not use this boiler if any part has been under water. Immediately call a qualified service technician to inspect the boiler and to replace any part of the control system and any gas control that has been under water.

Boiler water —

- Do not use petroleum-based cleaning or sealing compounds in boiler system. Water seal deterioration will occur, causing leakage between sections. This can result in substantial property damage.
- Do not use “homemade cures” or “boiler patent medicines”. Serious damage to boiler, personnel and/or property may result.
- Continual fresh makeup water will reduce boiler life. Mineral buildup in sections reduces heat transfer, overheats cast iron, and causes section failure. Addition of oxygen and other gases can cause internal corrosion. Leaks in boiler or piping must be repaired at once to prevent makeup water.
- Do not add cold water to hot boiler. Thermal shock can cause sections to crack.

Glycol — potential fire hazard —

All glycol is flammable when exposed to high temperatures. If glycol is allowed to accumulate in or around the boiler or any other potential ignition source, a fire can develop. In order to prevent potential severe personal injury, death or substantial property damage from fire and/or structural damage:

- Never store glycol of any kind near the boiler or any potential ignition source.
- Monitor and inspect the system and boiler regularly for leakage. Repair any leaks immediately to prevent possible accumulation of glycol.
- Never use automotive antifreeze or ethylene glycol in the system. Using these glycols can lead to hazardous leakage of glycol in the boiler system.

Saltwater Damage —

The exposure of boiler components to saltwater can have both immediate and long-term effects. While the immediate effects of saltwater damage are similar to those of freshwater (shorting out of electrical components, washing out of critical lubricants, etc.), the salt and other contaminants left behind can lead to longer term issues after the water is gone due to the conductive and corrosive nature of the salt residue. Therefore, Weil-McLain equipment contaminated with saltwater or polluted water will no longer be covered under warranty and should be replaced.

Electrical Damage —

If any electrical component or wiring came into contact with water, or was suspected to have come into contact with water, replace the boiler with a new Weil-McLain boiler.

Frozen Water Damage Hazard

Residences or buildings that are unattended in severely cold weather, boiler system components failures, power outages, or other electrical system failures could result in frozen plumbing and water damage in a matter of hours. For your protection, take preventative actions such as having a security system installed that operates during power outages, senses low temperature, and initiates an effective action. Consult with your boiler contractor or a home security agency.
Prepare boiler location — codes & checklist

Installations must follow these codes:

- Local, state, provincial, and national codes, laws, regulations and ordinances.
- Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1, when required.
- National Electrical Code.
- For Canada only: B149.1 or B149.2 Natural Gas and Propane Installation Code, CSA C22.1 Canadian Electrical Code Part 1 and any local codes.

The CGi boiler gas manifold and controls met safe operating and other performance criteria when boiler underwent tests specified in ANSI Z21.13 — latest edition.

For the Commonwealth of Massachusetts, read and follow the special instructions located on page 15 of this manual.

Before locating the boiler, check the following:

- Check for nearby connection to:
 - System water piping
 - Venting connections
 - Gas supply piping
 - Electrical power
- Check area around boiler. Remove any combustible materials, gasoline and other flammable liquids, or other contaminants.

Failure to keep boiler area clear and free of combustible materials, gasoline and other flammable liquids and vapors can result in severe personal injury, death or substantial property damage.

- Boiler must be installed so that gas control system components are protected from dripping or spraying water or rain during operation or service.
- If new boiler will replace existing boiler, check for and correct system problems, such as:
 1. System leaks causing oxygen corrosion or section cracks from hard water deposits.
 2. Incorrectly-sized expansion tank.
 3. Lack of antifreeze in boiler water causing system and boiler to freeze and leak.
Prepare boiler location — clearances

Recommended SERVICE clearances (Fig. 1a)

1. Provide clearances for cleaning and servicing the boiler and for access to controls and components. See Figure 1a for recommendations.

2. Provide at least screwdriver clearance to jacket front panel screws for removal of front panel for inspection and minor service. If unable to provide at least screwdriver clearance, install unions and shutoff valves in system so boiler can be moved for servicing.

Required MINIMUM clearances (Fig. 1b)

WARNING Never install the boiler in a space with clearances less than the minimum clearances shown in Figure 1b. Failure to comply can result in severe personal injury, death or substantial property damage and reduced boiler life.

1. **Hot water pipes:** at least \(\frac{3}{4} \) inch from combustible material.
2. **Single-wall vent pipe:** at least 6 inches from combustible material.
3. **Type B double-wall metal vent pipe:** refer to vent manufacturer’s recommendation for clearances to combustible material.

Flooring

The CGi boiler is approved for installation on combustible flooring, but must never be installed on carpeting.

WARNING Do not install boiler on carpeting even if foundation is used. Fire can result, causing severe personal injury, death or substantial property damage.

Foundation

1. Provide a solid brick or minimum 2-inch thick concrete foundation pad if any of the following is true:
 - floor can become flooded.
 - the boiler mounting area is not level.
2. Minimum dimensions are **25 inch length** by:

<table>
<thead>
<tr>
<th>Foundation Width</th>
<th>CGi-25/3</th>
<th>CGi-6</th>
<th>CGi-7</th>
<th>CGi-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Foundation Width:</td>
<td>12”</td>
<td>21”</td>
<td>24”</td>
<td>27”</td>
</tr>
</tbody>
</table>

Residential garage installations

Take the following special precautions when installing the boiler in a residential garage. If the boiler is located in a residential garage, per ANSI Z223.1/NFPA 54:

- Mount the boiler a minimum of **18 inches above the floor** of the garage to assure the burner and ignition devices will be no less than 18 inches above the floor.
- Locate or **protect the boiler** so it cannot be damaged by a moving vehicle.
Prepare boiler location — vent system

WARNING

Failure to follow all instructions can result in flue gas spillage and carbon monoxide emissions, causing severe personal injury or death.

DANGER

Inspect existing chimney before installing boiler. Failure to clean or replace perforated pipe or tile lining will cause severe personal injury or death.

DANGER

Direct exhaust venting (Category III) — DO NOT COMMON vent the CGI in a direct exhaust system (Category III). Connecting more than one appliance to a direct exhaust system will cause flue gas spillage or appliance malfunction, resulting in possible severe personal injury, death or substantial property damage.

When removing boiler from an existing common vent system:

At the time of removal of an existing boiler, the following steps shall be followed with each appliance remaining connected to the common venting system placed in operation, while the other appliances remaining connected to the common venting system are not in operation.

a. Seal any unused openings in the common venting system.

b. Visually inspect the venting system for proper size and horizontal pitch and determine there is no blockage or restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.

c. Test vent system — Insofar as is practical, close all building doors and windows and all doors between the space in which the appliances remaining connected to the common venting system are located and other spaces of the building. Turn on clothes dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.

d. Place in operation the appliance being inspected. Follow the operating instructions. Adjust thermostat so appliance will operate continuously.

e. Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle.

f. After it has been determined that each appliance remaining connected to the common venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers, and any other gas-burning appliance to their previous conditions of use.

Any improper operation of common venting system should be corrected so the installation conforms with the National Fuel Gas Code, ANSI Z223.1/NFPA 54 – latest edition. Correct by resizing to approach the minimum size as determined using the appropriate tables in Part 13 of that code. Canadian installations must comply with B149.1 or B149.2 Natural Gas and Propane Installation Code.

Chimney or vent requirements

2. See Ratings table on page 66 for minimum chimney or vent sizes. A chimney or vent without a listed cap should extend at least 3 feet above the highest point where it passes through a roof of a building and at least 2 feet higher than any portion of a building within a horizontal distance of 10 feet. A chimney or vent must not extend less than the distances stated above.

3. A lined chimney is preferred and must be used when required by local, state, provincial and national codes, laws, regulations and ordinances. Vitreous tile linings with joints that prevent retention of moisture and linings made of non-corrosive materials are best. Advice for flue connections and chimney linings can be obtained from local gas utility. Type B double-wall metal vent pipe or single-wall vent pipe may be used as a liner.

4. Cold masonry chimneys, also known as outside chimneys, typically have one or more walls exposed to outside air. When any atmospheric gas-fired boiler with automatic vent damper is vented through this type of chimney, the potential exists for condensation to occur. Condensation can damage a masonry chimney. Weil-McLain recommends the following to prevent possible damage.

b. Provide drain trap to remove any condensate.
Prepare boiler location — air contamination

Please review the following information on potential combustion air contamination problems. Refer to Table 1 for products and areas which may cause contaminated combustion air.

WARNING

To prevent potential of severe personal injury or death, check for products or areas listed below before installing boiler. If any of these contaminants are found:

- remove contaminants permanently

 or

- isolate boiler and provide outside combustion air. See national, provincial or local codes for further information.

Table 1 Corrosive or destructive contaminants and likely locations

<table>
<thead>
<tr>
<th>Products to avoid</th>
<th>Areas likely to have contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray cans containing chloro/fluorocarbons</td>
<td>Dry cleaning/laundry areas and establishments</td>
</tr>
<tr>
<td>Permanent wave solutions</td>
<td>Swimming pools</td>
</tr>
<tr>
<td>Chlorinated waxes/cleaners</td>
<td>Metal fabrication plants</td>
</tr>
<tr>
<td>Chlorine-based swimming pool chemicals</td>
<td>Beauty shops</td>
</tr>
<tr>
<td>Calcium chloride used for thawing</td>
<td>Refrigeration repair shops</td>
</tr>
<tr>
<td>Sodium chloride used for water softening</td>
<td>Photo processing plants</td>
</tr>
<tr>
<td>Refrigerant leaks</td>
<td>Auto body shops</td>
</tr>
<tr>
<td>Paint or varnish removers</td>
<td>Plastic manufacturing plants</td>
</tr>
<tr>
<td>Hydrochloric acid/muriatic acid</td>
<td>Furniture refinishing areas and establishments</td>
</tr>
<tr>
<td>Cements and glues</td>
<td>New building construction</td>
</tr>
<tr>
<td>Antistatic fabric softeners used in clothes dryers</td>
<td>Remodeling areas</td>
</tr>
<tr>
<td>Chlorine-type bleaches, detergents, and cleaning solvents found in household laundry rooms</td>
<td>Garages with workshops</td>
</tr>
<tr>
<td>Adhesives used to fasten building products and other similar products</td>
<td>Buildings under construction (where air is contaminated with particulates)</td>
</tr>
<tr>
<td>Airborne particulates (drywall dust, fiberglass particles, road or gravel dust, lint, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION DUST HAZARD — Airborne particulates, such as drywall dust or fiberglass dust, will cause blockage of the CGI burners, resulting in carbon monoxide production, a fire hazard, or building freeze damage. If the boiler is operated during construction, you must isolate the boiler to provide clean air for combustion. **If you are unable to ensure uncontaminated air in the boiler vicinity at all times, you must inspect the boiler at least once weekly.** When inspecting, clean the burners if necessary using the procedure given on page 45. Failure to follow these guidelines could result in severe personal injury, death or substantial property damage.
1e Prepare boiler location — air openings

WARNING Combustion air opening location and sizing requirements depend on the clearances around the boiler. Check the boiler placement compared to Figure 1a, page 7.

If all clearances are at least equal to Figure 1a, page 7, apply the sizing and placement of openings given on pages 10 and 11.

If ANY clearance is less than Figure 1a, page 7, you must provide air openings sized and located as shown in Figure 1b, page 7. **DO NOT** apply the sizing and location information shown on page 10 or 11.

Air openings must be provided
Combustion and ventilation air openings to be in accordance with the section “Air for Combustion and Ventilation,” of the National Fuel Gas Code, ANSI Z223.1/NFPA 54, or applicable provisions of the local building codes.

WARNING Provide adequate combustion and ventilation air to assure proper combustion and reduce the risk of severe personal injury, death or substantial property damage caused by flue gas spillage and carbon monoxide emissions.

Air opening options

Two openings — Air supply from inside the building ✷
1. If the building is of unusually tight construction (see definition, next page), the building must also be provided with air openings directly to the outside, sized and located per Figure 3, Figure 4 or Figure 5.
2. Buildings of typical construction should provide adequate combustion air from natural infiltration, so additional air openings to the building are not required.
3. See Figure 2. Provide two openings through the interior wall, within 12 inches of the ceiling and the floor, sized per Figure 2.

Two openings — Air supply directly from outside ✷
1. Air openings must be directly through an outside wall, or into a space that connects directly to the outside (such as a ventilated attic or crawl space, for example).
2. See Figure 3 — Openings directly through an outside wall — provide two openings within 12 inches of the ceiling and the floor, sized per Figure 3.
3. See Figure 4 — Air supplied through vertical ducts — provide two openings terminated within 12 inches of the ceiling and the floor, sized per Figure 4.
4. See Figure 5 — Air supplied through horizontal ducts — provide two openings within 12 inches of the floor and the ceiling, sized per Figure 5.
Prepare boiler location — air openings

Free area of openings — the minimum areas given in this manual are free area (equals the area, length times width of opening, after deduction for louver obstruction).

Use the free area information provided by the louver manufacturer. When this information is not available, assume:

- Wood louvers — assume free area is 20% of total; so the actual area of each opening with wood louvers would be 5 times the required free area.
- Metal louvers — assume free area is 60% of actual area; so, for wood louvers, the actual area of each opening must be 1.67 times the required free area.

Unusually tight construction
Unusually tight construction means (per ANSI Z223.1/NFPA 54) buildings in which:

- Walls and ceilings exposed to the outside atmosphere have a continuous water vapor retarder with a rating of 1 perm or less with openings gasketed, and . . .
- Weather-stripping has been added on openable windows and doors, and . . .
- Caulking or sealants are applied to areas such as joints around windows and door frames, between sole plates and floors, between wall-ceiling joints, between wall panels, at penetrations for plumbing, electrical, and gas lines, and in other openings.

For such construction cases, if appliances use inside air for combustion, provide air openings into the building from outside. Size and locate these openings per the appropriate case in Figure 3, 4 or 5 on page 10.

Exhaust fans and air movers
The appliance space must never be under a negative pressure, even if the appliance(s) are installed as direct vent. Always provide air openings sized not only to the dimensions required for the firing rate of all appliances, but also to handle the air movement rate of the exhaust fans or air movers using air from the building or space.

Motorized air dampers
If the air openings are fitted with motorized dampers, electrically interlock the damper to:

- Prevent the boiler from firing if the damper is not fully open.
- Shut the boiler down should the damper close during boiler operation.

To accomplish this interlock, wire an isolated contact (proving the damper open) in series with the thermostat input to the boiler. The boiler will not start if this contact is open, and will shut down should it open during operation.

Exception for large spaces
No combustion air openings are needed when the boiler (and other appliances) are installed in a space with a volume at least 50 cubic feet per 1,000 Btu/h of all installed appliances, provided:

- the building must not have unusually tight construction (see definition, this page).
- all clearances around the boiler must be no less than shown in Figure 1a, page 7.

To determine if the space is large enough to qualify:

- Add the total input of all appliances in MBH (1,000’s of Btu/h).
- Multiply this number times 50 to determine minimum room volume.
- Example: For a total input of 100 MBH (100,000 Btu/h), minimum volume is 50 x 100 = 5,000 cubic feet. At a ceiling height of 8 feet, the space must have at least 5,000 ÷ 8 = 625 square feet (25 feet x 25 feet, for instance).

Single air opening option

A single combustion air opening can be used in lieu of the two-opening options on page 10, provided:

Clearances from boiler to walls
- The boiler must have clearances of at least those shown in Figure 1a, page 7.

Opening must be directly to outside
- The opening must connect directly to the outdoors or to a space that communicates directly to the outdoors (not to an interior space).
- The air can be provided through a direct opening or through a horizontal or vertical duct.

Opening placement
- The top of the air opening must be within 12 inches of the ceiling.

Opening size
- The free area of the opening must be at least equal to the sum of the areas of all equipment vent connectors in the space, and . . .
- The free area of the opening must be at least 1 square inch per 3,000 Btu/hr input rating of all equipment located in the space.

Exception for large spaces

No combustion air openings are needed when the boiler (and other appliances) are installed in a space with a volume at least 50 cubic feet per 1,000 Btu/h of all installed appliances, provided:

- the building must not have unusually tight construction (see definition, this page).
- all clearances around the boiler must be no less than shown in Figure 1a, page 7.

To determine if the space is large enough to qualify:

- Add the total input of all appliances in MBH (1,000’s of Btuh).
- Multiply this number times 50 to determine minimum room volume.
- Example: For a total input of 100 MBH (100,000 Btuh), minimum volume is 50 x 100 = 5,000 cubic feet. At a ceiling height of 8 feet, the space must have at least 5,000 ÷ 8 = 625 square feet (25 feet x 25 feet, for instance).
Prepare boiler – placement & setup

Place boiler/crate near position
1. Leave boiler in shipping carton and on pallet until installation site is ready.
2. Move entire shipping carton and pallet next to selected location.
3. Remove shipping carton.
4. Remove boiler from pallet.

NOTICE Do not drop boiler or bump jacket on floor or pallet. Damage to boiler can result.
 a. Tilt left side of boiler up and place a board under left legs.
 b. Tilt boiler the other way and place a board under right legs.
 c. Slide boiler backward off pallet and into position.
5. Check level.
 a. Shim legs, if necessary.
 b. Do not alter legs.

Inspect orifices and burners
1. Remove front jacket door. Remove burner shield (see Figure 40, item 4, page 64).
2. Check for correctly-sized manifold orifices. See Table 2 for sizing. (The orifice size is stamped on the orifice spud barrel.)

DANGER Correctly-sized manifold orifices must be used. Failure to do so will result in severe personal injury, death or substantial property damage.
3. Reinstall burner shield.

WARNING Do not operate boiler without burner shield in place. Failure to do so could result in severe personal injury, death or substantial property damage.

Orifice replacement procedure (when required)
1. Remove the screws securing the burner shield and remove burner shield.
2. Using a 7/16” open-end wrench, remove the burner orifices from the manifold.
3. Apply a small amount of pipe dope to each of the new orifices and install in the manifold using a 7/16” open-end wrench. Make sure the orifices are aligned correctly, not cross-threaded in the manifold tappings.

WARNING Use only pipe dope compatible with propane gas, even if boiler is to be operated on natural gas. Failure to comply could result in severe personal injury, death or substantial property damage.
4. Carefully replace the burner shield.
5. Follow the check-out procedure, Section 8 page 36, to assure the boiler is now operating properly after orifices are replaced.

Table 2 Manifold orifice sizing at sea level and altitudes to 4,500 feet

<table>
<thead>
<tr>
<th>Location</th>
<th>Boiler model number</th>
<th>Natural gas</th>
<th>Propane gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-2,000 ft.</td>
<td>over 2,000 ft.</td>
</tr>
<tr>
<td>U. S.</td>
<td>CGI-25</td>
<td>2.30 mm</td>
<td>(Note 1)</td>
</tr>
<tr>
<td></td>
<td>CGI-3 and CGI-5</td>
<td>2.55 mm</td>
<td>1.60 mm</td>
</tr>
<tr>
<td></td>
<td>CGI-4, CGI-6 - CGI-8</td>
<td>2.70 mm</td>
<td>1.65 mm</td>
</tr>
<tr>
<td>Canada</td>
<td>CGI-25</td>
<td>2.30 mm</td>
<td>#44</td>
</tr>
<tr>
<td></td>
<td>CGI-3 and CGI-5</td>
<td>2.55 mm</td>
<td>#41</td>
</tr>
<tr>
<td></td>
<td>CGI-4, CGI-6 - CGI-8</td>
<td>2.70 mm</td>
<td>#38</td>
</tr>
</tbody>
</table>

Note 1: For elevations above 2,000 feet, contact your local Weil-McLain sales office for details.
Prepare boiler — pressure test

Hydrostatic pressure test
Pressure test boiler before attaching water or gas piping (except as noted below) or electrical supply.

Prepare boiler for test
1. Remove the shipping nipple (from CGi supply tapping) and remove the boiler relief valve. Temporarily plug the relief valve tapping with a ¾” NPT pipe plug.
2. Remove 1¼” nipple, reducing tee and drain valve from circulator hardware and pressure/temperature gauge carton. Install in boiler return connection as shown on page 3 and Figure 42, page 67. Install circulator on either the return or supply.
3. Remove 1¼” nipple, 1¼” x 1¼” x ½” tee and pressure/temperature gauge from circulator hardware and pressure/temperature gauge carton. Pipe to boiler supply connection as shown on page 3 and Figure 42, page 67. (Use pipe dope sparingly.)
4. Connect a hose to boiler drain valve, the other end connected to a fresh water supply. Make sure hose can also be used to drain boiler after test.
5. Connect a nipple and shutoff valve to system supply connection on the 1¼” tee. This valve will be used to bleed air during the fill. (Valve and nipple are not included with boiler.)
6. Connect a nipple and shutoff valve to system return connection (at circulator flange if circulator installed on return). This valve will be used to bleed air during the fill. (Valve and nipple are not included with boiler.)

Fill and pressure test
1. Open the shutoff valves you installed on supply and return connections.
2. Slowly open boiler drain valve and fresh water supply to fill boiler with water.
3. When water flows from shutoff valves, close boiler drain valve.
5. Slowly reopen boiler drain valve until test pressure on the pressure/temperature gauge reaches no more than:
 - 45 psig for boilers with 30 psig relief valve.
 - 75 psig for boilers with 50 psig relief valve.
6. Test for no more than 10 minutes at:
 - 45 psig for boilers with 30 psig relief valve.
 - 75 psig for boilers with 50 psig relief valve.

WARNING
Do not leave boiler unattended. A cold water fill could expand and cause excessive pressure, resulting in severe personal injury, death or substantial property damage.

7. Make sure constant gauge pressure has been maintained throughout test. Check for leaks. Repair if found.

WARNING
Leaks must be repaired at once. Failure to do so can damage boiler, resulting in substantial property damage.

DANGER
Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

Drain and remove fittings
1. Disconnect fill water hose from water source.
2. Drain boiler at drain valve or out hose, whichever provides best access to drain. Remove hose after draining if used to drain boiler.
3. Remove nipples and valves unless they will remain for use in the system piping.
4. Remove plug from relief valve tapping. See page 20 to replace relief valve.
3a Venting — general information

CGi venting methods — Chimney draft or Direct exhaust

Chimney draft venting

Chimney draft venting uses the natural draft provided by a vertical vent or chimney. Category I appliance (non-positive vent static pressure and vent gas temperature that avoids excessive condensate production in vent). See Section 3b. Chimney draft installations use:

1. Vent connector (single or double wall) sized to eliminate positive pressure in vent system. Diameter increases immediately at boiler.
2. Double wall metal vent (B-vent) or chimney with liner approved by the National Fuel Gas Code, ANSI Z223.1/NFPA 54 – latest edition, or in Canada B149.1 or B149.2 Natural Gas and Propane Installation Code.

Direct exhaust — vertical or sidewall

Direct exhaust venting uses inside combustion air with no combustion air connector piping. All CGi flue gas vents are pressurized, requiring careful sealing of all joints. Category III appliance (positive vent static pressure and vent gas temperature that avoids excessive condensate production in vent). See pages 15-19. Direct exhaust installations use:

2. Vent termination through outside wall, roof or unused chimney. Tight chimney areas will make vent joint construction very difficult.

3b Venting — chimney draft venting

<table>
<thead>
<tr>
<th>Table 3 Vent connector diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler model number</td>
</tr>
<tr>
<td>CGi-25 & CGi-3</td>
</tr>
<tr>
<td>CGi-4 to CGi-8</td>
</tr>
</tbody>
</table>

DANGER

Inspect existing chimney before installing boiler. Failure to clean or replace perforated pipe or lining will cause severe personal injury or death.

WARNING

Vent sizing given in Table 3 is only a general guideline. The vent connector and chimney must be designed, sized and constructed in compliance with all applicable codes. Failure to correctly size and install the vent system could result in severe personal injury, death or substantial property damage.

1. Use double wall metal vent (B-vent) or chimney with liner as required by the National Fuel Gas Code, ANSI Z223.1/NFPA 54 – latest edition, or in Canada B149.1 or B149.2 Natural Gas and Propane Installation Code.
2. To prevent downdrafts, chimney should extend at least 3 feet above the highest point where it passes through a roof and at least 2 feet higher than any portion of a building within a horizontal distance of 10 feet.
3. To vent with another appliance, see National Fuel Gas Code, ANSI Z223.1/NFPA 54 – latest edition or in Canada B149.2 or B149.2 Natural Gas and Propane Installation Code.
4. Do not connect breeching to any portion of a mechanical draft system that can operate under positive pressure.
5. Maintain minimum 2” clearance from combustible materials to vent pipe.
6. Do not use chimney with an open fireplace.
7. Make horizontal runs as short as possible. Long runs can cause condensation.
8. When longer runs are used, support pipe with appropriate hangers.
9. To prevent blockage, do not vent into bottom of chimney.
10. Vent pipe must not go beyond inside wall of chimney.
11. Vent passing through floors or ceilings must be firestopped.
12. See Figure 7 and Table 3 to connect boiler to venting system.
3c Venting — Direct exhaust — components

Obtain vent system components

1. The following special gas vent systems comply with UL-1738 and ULC-S636 standards and are certified by CSA as the only systems suitable for use with CGi boilers (all 3” diameter):
 - Heat-Fab, Inc. Saf-T-Vent®
 - Flex-L International, Inc. StaR-34
 - Z-Flex®, Inc. Z-Vent II
 - ProTech Systems FasNSeal™

WARNING Use only the vent starter of the same manufacturer as the vent components. Do not mix components from different systems. The vent system could fail, causing flue gas spillage, resulting in severe personal injury or death.

2. Select vent method based on page 14 and installation requirements.
3. Refer to Table 4 for maximum vent run lengths and number of elbows. Do not exceed data in Table 4.

Massachusetts installations

(a) For all side wall horizontally vented gas fueled equipment installed in every dwelling, building or structure used in whole or in part for residential purposes, including those owned or operated by the Commonwealth and where the side wall exhaust vent termination is less than seven (7) feet above finished grade in the area of the venting, including but not limited to decks and porches, the following requirements shall be satisfied:

1. **INSTALLATION OF CARBON MONOXIDE DETECTORS.** At the time of installation of the side wall horizontal vented gas fueled equipment, the installing plumber or gas fitter shall observe that a hard wired carbon monoxide detector with an alarm and battery back-up is installed on the floor level where the gas equipment is to be installed. In addition, the installing plumber or gas fitter shall observe that a battery operated or hard wired carbon monoxide detector with an alarm is installed on each additional level of the dwelling, building or structure served by the side wall horizontally vented gas fueled equipment. It shall be the responsibility of the property owner to ensure the services of qualified licensed professionals for the installation of hard wired carbon monoxide detectors
 - a. In the event that the side wall horizontally vented gas fueled equipment is installed in a crawl space or an attic, the hard wired carbon monoxide detector with alarm and battery back-up may be installed on the next adjacent floor level.
 - b. In the event that the requirements of this subdivision can not be met at the time of completion of installation, the owner shall have a period of thirty (30) days to comply with the above requirements; provided, however, that during said thirty (30) day period, a battery operated carbon monoxide detector with an alarm shall be installed.

2. **APPROVED CARBON MONOXIDE DETECTORS.** Each carbon monoxide detector as required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL 2034 listed and IAS certified.

3. **SIGNAGE.** A metal or plastic identification plate shall be permanently mounted to the exterior of the building at a minimum height of eight (8) feet above grade directly in line with the exhaust vent terminal for the horizontally vented gas fueled heating appliance or equipment. The sign shall read, in print size no less than one-half (1/2) inch in size, "GAS VENT DIRECTLY BELOW. KEEP CLEAR OF ALL OBSTRUCTIONS."

4. **INSPECTION.** The state or local gas inspector of the side wall horizontally vented gas fueled equipment shall not approve the installation unless, upon inspection, the inspector observes carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR 5.08(2)(a)1 through 4.

(b) **EXEMPTIONS:** The following equipment is exempt from 248 CMR 5.08(2)(a)1 through 4:

1. The equipment listed in Chapter 10 entitled “Equipment Not Required To Be Vented” in the most current edition of NFPA 54 as adopted by the Board; and
2. Product Approved side wall horizontally vented gas fueled equipment installed in a room or structure separate from the dwelling, building or structure used in whole or in part for residential purposes.

(c) **MANUFACTURER REQUIREMENTS — GAS EQUIPMENT VENTING SYSTEM PROVIDED.** When the manufacturer of Product Approved side wall horizontally vented gas equipment provides a venting system design or venting system components with the equipment, the instructions provided by the manufacturer for installation of the equipment and the venting system shall include:
 1. Detailed instructions for the installation of the venting system design or the venting system components; and
 2. A complete parts list for the venting system design or venting system.

(d) **MANUFACTURER REQUIREMENTS — GAS EQUIPMENT VENTING SYSTEM NOT PROVIDED.** When the manufacturer of a Product Approved side wall horizontally vented gas fueled equipment does not provide the parts for venting the flue gases, but identifies “special venting systems”, the following requirements shall be satisfied by the manufacturer:
 1. The referenced “special venting system” instructions shall be included with the appliance or equipment installation instructions; and
 2. The “special venting systems” shall be Product Approved by the Board, and the instructions for that system shall include a parts list and detailed installation instructions.

(e) A copy of all installation instructions for all Product Approved side wall horizontally vented gas fueled equipment, all venting instructions, all parts lists for venting instructions, and/or all venting design instructions shall remain with the appliance or equipment at the completion of the installation.

Table 4 Maximum vent length

<table>
<thead>
<tr>
<th>Max. vent length (feet)</th>
<th>Total number of elbows (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>--</td>
</tr>
</tbody>
</table>

CGi-25 to CGi-6	55 48 41 34 27 20
CGi-7	35 28 21 14 7
CGi-8	28 21 14 7
	Note 1: Do not include termination fitting when counting total number of elbow.

4. Select vent components from separate CGi, & GV Vent Component Supplement. All components, including the vent starter, must be of the same vent manufacturer. Do not mix components.
3d Venting — direct exhaust — vent starter

1. Select a vent pipe manufacturer and obtain all vent components needed, based on boiler location and venting method.

2. You must use the vent starter made by the vent pipe manufacturer. See separate CGi, & GV Vent Component Supplement, for part number of each component, listed by vent manufacturer.

Use only the vent starter of the same manufacturer as the vent components. Do not mix components from different systems. The vent system could fail, causing flue gas spillage, resulting in severe personal injury or death.

3. Follow all applicable national, state, local or provincial codes when venting the CGi boiler.

4. Connect vent starter to blower housing outlet as shown in the Figures 8 through 11.
 a. Do not mix components from different vent manufacturers.
 b. Maintain minimum 2” clearance from combustible materials to vent pipe.
 c. Seal with sealant specified by vent pipe manufacturer, using ⅜” bead (not required for FasNSeal™).
 d. Tighten strap at band clamp screw until strap is snug around blower housing.
 e. Place blower cover over blower and fasten with four (4) screws. (Blower cover not shown for clarity).

Figure 8
FasNSeal™ vent starter

Figure 9
Z-Vent II vent starter

Figure 10
Saf-T Vent® vent starter

Figure 11
StaR-34 vent starter
Venting — direct exhaust — termination

The vent termination must be located to meet all requirements below (also applies to vertical vent terminations). The minimum distance from adjacent public walkways, adjacent buildings, openable windows and building in the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and/or the Natural Gas and Propane Installation Code, CAN/CSA B149.1. The vent termination clearances below are for U.S.A., for Canadian vent termination clearances please refer to the requirements of CSA B149.1 Natural Gas and Propane Installation Code. Consideration should be given to avoid possible damage caused by vent plumes and condensate when choosing a venting configuration and location. Maintain a minimum clearance of 4 ft. (1.22m) horizontally, and in no case above or below, unless a 4 ft. (1.22m) horizontal distance is maintained, from electrical meters, gas meters, regulators, and relief equipment.

Follow instructions on this page when determining vent location to avoid possibility of severe personal injury, death or substantial property damage.

1. Locate the boiler and vent penetration through the wall so all requirements on this page and in Figure 12 will be met. Also follow vent manufacturer’s instructions.
2. Gases will form white plume in winter. Plume could obstruct window view.
3. Prevailing winds could cause freezing of condensate and water/ice buildups on vent termination, building, plants or roof. Ice buildup on vent termination can cause boiler shutdown and building freeze up.
4. Winds over 31 mph can cause nuisance boiler shutdown if boiler is sidewall vented. This could result in loss of heat to building, causing freeze up.
5. Locate or guard vent termination to prevent condensate from damaging exterior surfaces.
6. Locate the vent termination well away from trees, shrubs, and decorative items.
7. Locate or guard vent to prevent accidental contact by people or pets.
8. Do not terminate vent in window well, stairwell, alcove, courtyard, or other recessed areas.
9. Do not wrap or insulate vent pipe or fittings.
10. Do not terminate vent above any door or window. Condensate can freeze, causing ice formations.
11. Do not connect:
 • Any other appliance to vent pipe.
 • Multiple boilers to a common vent pipe.
12. Canadian installations — See B149.1 or B149.2 Natural Gas and Propane Installation Code. Terminate vent no less than 6 feet from another combustion air inlet, 3 feet from any other building opening, and 3 feet from any gas service regulator.
13. See Figure 12, showing that the vent must terminate:
 • more than 4 feet below or to side of all doors or windows.
 • more than 1 foot above grade or anticipated snow line.
 • at least 7 feet above public walkway.
 • 3 feet above any forced air intake within 10 feet.
14. Vent must also terminate:
 • at least 6 feet away from adjacent walls.
 • no closer than 5 feet below roof overhang.
 • at minimum of 4 feet horizontally (and in no case above or below unless a 4 foot horizontal distance is maintained) from electric meters, gas meters, regulators, relief valves, and other equipment.
15. Site conditions may dictate greater clearances.
16. Do not extend exposed vent pipe outside of building more than 4 feet. Condensate could freeze and block vent pipe.

A gas vent extending through an exterior wall shall not terminate adjacent to the wall or below building extensions such as eaves, parapets, balconies or decks. Failure to comply could result in severe personal injury, death or substantial property damage.

Figure 12 Vent termination minimum clearances
1. Do not mix types or manufacturers of vent materials.
2. Clean all joints before sealing. See vent manufacturer’s instructions for cleaning and sealing joints. Use their specified sealant. Do not use screws.
3. Install vent pipe with seams on top of vent horizontal runs. Follow requirements in Section 3e for vent termination.
4. Maintain minimum 2” clearance from combustible materials to vent pipe.
5. **Vertical venting** — See Figure 13. Follow vent manufacturer’s instructions for venting through roof.
 - Vent pipe must extend through roof flashing, jacket or thimble.
 - Vent may pass through floor, inside wall or concealed space when installed according to vent manufacturer’s instructions.

Sidewall venting — See Figures 14 and 15. Vent must terminate at least one foot above anticipated snowline. Vent must be terminated only with:
 - Tee or elbow with integral screen. (Tee may be mounted either vertically or horizontally. **DO NOT** use horizontal tee with CGi-7 or CGi-8.)
 - Elbow and termination coupling with screen (not available for StaR-34).
6. Do not seal vent pipe (slip connector for Saf-T Vent) to inside or outside plate.
7. If passing through noncombustible wall, provide hole diameter large enough to insert the vent pipe (slip connector for Saf-T Vent).
8. Install horizontal drain tee as close as possible to boiler, in first horizontal run. See Figures 13 and 14.
9. Do not exceed the maximum vent system length given in Table 4, page 15.

Condensate drain line — use only silicone tubing rated for at least 400°F for the first 18” of condensate drain line, then other non-metallic tubing may be used. Using any other material could cause flue gas leakage, potentially resulting in severe personal injury, death or substantial property damage.

On some installations, the condensate drain fitting may be omitted, provided:
 - Vent manufacturer shows this option in their instructions.
 - Vent is sloped toward termination as shown in dotted lines in Figure 14.
 - The vent is installed per Weil-McLain and vent manufacturer’s instructions.
 - Condensate drippage from such vents may accumulate on the ground below. Consider traffic in the area to avoid hazard due to ice accumulation.
VENTING — DIRECT EXHAUST — INSTALLATION (cont.)

Figure 15 Sidewall termination

WARNING
Using any termination other than one of those shown could cause nuisance outages and loss of heat, resulting in substantial property damage.
4a Water piping — general information

General piping information

If installation is to comply with ASME or Canadian requirements, an additional high temperature limit maybe needed. Install control in supply piping between boiler and isolation valve. Set second control to minimum 20°F above setpoint of first control. Maximum allowable setpoint is 240°F. See Section 9b for wiring.

Water temperature sensor

A low water cutoff device is required when boiler is installed above radiation level or by certain state or local codes or insurance companies. Use a low water cutoff designed for water installations. Electrode probe-type is recommended. The boiler has a pre-installed water temperature sensor. Use backflow check valve in cold water supply as required by local codes.

Pressure/temperature gauge

Install pressure/temperature gauge in tee on supply piping (as shown in drawing on page 3).

Isolation valves

Isolation valves are required to enable servicing of the boiler’s temperature sensor. Install as shown in appropriate piping diagram.

Relief valve

Install relief valve vertically in ¾” tapping on side of boiler. See Figure 16, page 21, and the tag attached to the relief valve for manufacturer’s instructions.

WARNING

To avoid water damage or scalding due to relief valve operation:

- Discharge line must be connected to relief valve outlet and run to a safe place of disposal. Terminate the discharge line to eliminate possibility of severe burns should the valve discharge.
- Discharge line must be as short as possible and be the same size as the valve discharge connection throughout its entire length.
- Discharge line must pitch downward from the valve and terminate at least 6” above the floor drain where any discharge will be clearly visible.
- The discharge line shall terminate plain, not threaded, with a material serviceable for temperatures of 375°F or greater.
- Do not pipe the discharge to any place where freezing could occur.
- No shutoff valve shall be installed between the relief valve and boiler, or in the discharge line. Do not plug or place any obstruction in the discharge line.
- Failure to comply with the above guidelines could result in failure of the relief valve to operate, resulting in possibility of severe personal injury, death or substantial property damage.
- Test the operation of the valve after filling and pressurizing system by lifting the lever. Make sure the valve discharges freely. If the valve fails to operate correctly, replace it with a new relief valve.

Circulator

The circulator is shipped loose (wiring pre-attached to boiler) to allow you to locate it either in the return or supply piping, as desired. See page 3 for a typical installation. Pipe the expansion tank to the suction side of the circulator whenever possible. Install an air separator in the supply piping. Connect the expansion tank to the air separator only if the separator is on the suction side of the circulator. Always install the system fill connection at the same point as the expansion tank connection to the system. Figures 16 and 17 show typical near-boiler piping connections.

System water piping

See Figure 16 (diaphragm-type or bladder-type expansion tank) or Figure 17 (closed-type expansion tank) and Table 6, for near-boiler and single-zone systems designed for return water at least 130°F.

See pages 22-23 to complete multiple-zone piping or pages 24-29 to complete piping for radiant heating systems or converted gravity systems (large-volume systems originally designed for circulation by natural convection rather than a pump). See page 29 for boilers used with refrigeration systems.

Table 6 Water pipe size (based on 20°F rise)

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>To system</th>
<th>From system</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGI-25</td>
<td>¾"</td>
<td>¾"</td>
</tr>
<tr>
<td>CGI-3, 4, 5</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>CGI-6, 7</td>
<td>1¼"</td>
<td>1¼"</td>
</tr>
<tr>
<td>CGI-8</td>
<td>1½"</td>
<td>1½"</td>
</tr>
</tbody>
</table>

Note: The boiler supply and return connections, the return/drain tee and the supply/gauge tee supplied with the boiler are 1¼" NPT. One of the circulator flanges supplied with the boiler is 1½”. The other circulator flange is the size of the recommended system piping shown above.

WARNING

Chillers or air handling units: Install boiler such that —

- Chilled medium, if used, is piped in parallel with heating boiler. Use appropriate valves to prevent chilled medium from entering boiler. Consult AHRI Installation and Piping Guides.
- If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cold water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.
4b Water piping — single-zone system

CAUTION Undersized expansion tanks cause system water to be lost from relief valve and makeup water to be added through fill valve. Eventual section failure can result.

Diaphragm-type or bladder-type expansion tank *(Figure 16)*

1. Ensure expansion tank size will handle boiler and system water volume and temperature. Tank must be located in boiler return piping as close to boiler as possible, before inlet side of circulator. See tank manufacturer’s instructions for details.

2. Install an automatic air vent as shown.

Closed-type expansion tank *(Figure 17)*

1. Ensure expansion tank size will handle boiler and system water volume and temperature. See tank manufacturer’s instructions for details.

2. Connect tank to ½” NPT tapping located behind supply outlet, using ½” NPT piping. Pitch any horizontal piping up towards tank 1 inch per 5 feet of piping.

WARNING Use Figure 16 or Figure 17 only for single-zone systems designed for return water at least 130°F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, refer to the special piping suggestions of pages 24-29. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.
Piping multiple zones
Follow instructions on pages 20 and 21 to install near-boiler or single-zone piping. (Also refer to Piping for radiant heating systems or converted gravity systems, below, if applicable.)
See Figure 18 or Figure 19 to complete installation.

Zoning with circulators (Figure 18) (return temp over 130°F)
1. Size each circulator to individual circuit requirements.
2. Do not install circulator on boiler (except for primary/secondary piping).
3. Install isolation (balancing) valves to adjust flow to distribute heat to all zones.
4. Install and wire a separate relay for each zone circulator.

Zoning with zone valves (Figure 19) (return temp over 130°F)
1. Install isolation (balancing) valves to adjust flow to distribute heat to all zones.
2. Provide a separate 24-volt transformer to power the zone valves. Size the transformer to handle the total rated load of all connected zone valves.

Piping for radiant heating systems or converted gravity systems

Converted gravity (or steam) systems
Whenever possible, use the primary/secondary piping shown in Figures 20 or 21 on page 25. This piping design allows changing boiler flow rate without affecting primary circuit flow rate.

If Figures 20 or 21 cannot be used, use the boiler-by-pass piping shown in Figure 22 or Figure 23 on page 27. You can also use the piping shown in Figure 24 on page 29 (system-bypass), if the reduced flow rate in the heating system will not cause heat distribution problems.

WARNING Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

Radiant heating systems
Preferably, use primary/secondary piping, as shown in Figures 20 or 21 on page 25. Alternatively, use the method of either Figure 22 or Figure 23 on page 27.

Do not use the piping of Figure 24 (system-bypass), because this method does not control radiant system supply temperature.

If radiant system tubing has no oxygen barrier, a heat exchanger must be used.

WARNING Radiant heating system piping should include a means of regulating the boiler return water temperature and the system supply temperature (such as provided by an injection pumping control). Boiler return water temperature will be adequately controlled using the methods shown in this manual provided the system supply temperature is relatively constant.

DO NOT apply the methods in this manual if the system is equipped with an outdoor reset control. Instead, provide controls and piping which can regulate the boiler return water temperature at no less than 130°F regardless of system supply temperature. Contact your Weil-McLain representative for suggested piping and control methods. Failure to prevent cold return water temperature to the boiler could cause corrosion damage to the sections or burners, resulting in possible severe personal injury, death or substantial property damage.
4c Water piping — multiple zones (continued)

Figure 18 Zoning with circulators
— return water 130°F or higher.

Figure 19 Zoning with zone valves
— return water 130°F or higher.

1 Boiler isolation (balancing) valves
2 Flow/check valve
3 System or zone circulator
5 Zone valve
6 Drain valve
9 Relief valve

10 Automatic air vent (with diaphragm-type expansion tank), or connect to tank fitting (closed-type expansion tank). **DO NOT** use an automatic air vent when using closed-type expansion tank. It would allow air to leave the system, causing waterlogging of the expansion tank.

11 Fill valve

12 Diaphragm-type or bladder-type expansion tank, if used (For closed-type expansion tank, pipe from top of air separator to tank fitting as in Figure 17.)

13 Air separator and automatic vent, if used (Note that the fill valve must always be connected to the expansion tank, regardless of location of expansion tank circulator or air separator.

WARNING

For systems with possible low return-water temperature (such as converted gravity systems, radiant heating systems and heat pump systems), refer to the special piping suggestions of Figures 20 – 24, as applies. Failure to prevent sustained low return water temperature to the boiler could cause corrosion of the boiler sections, resulting in severe personal injury, death or substantial property damage.
4d Piping — low temperature systems

Primary/secondary (preferred) bypass piping method

Primary/secondary bypass piping is preferred because the flow rate and temperature drop in the heating circuit(s) is determined only by the heating circuit circulator(s). So adjustment of the bypass valves in the boiler circuit will not cause a change in the heating circuit rate and temperature distribution.

Figures 20 and 21 show suggested bypass arrangements using *primary/secondary* bypass piping (preferred) for low temperature systems such as *radiant heating systems* or *converted gravity systems*. For alternatives, see pages 26 through 29.

The bypass valves (items 7a and 7b) provide mixing of hot boiler outlet water with cooler system return water — set to assure a minimum return water temperature (at least 130°F) to the boiler. Set the valves as explained below.

Temperature gauges

Gauge 4a is suggested, but optional on any system.

Gauge 4b is optional on converted gravity systems, but required on radiant heating systems — to display the water temperature being supplied to the radiant tubing.

Gauge 8 is required on all systems to assure the return water temperature is accurately set for a minimum of 130°F. If this gauge is not available however, adjust the valves such that the boiler-mounted temperature/pressure gauge reads at least 150°F when the system return water is cold (approximately 60°F water temperature).

Valve adjustment (Figures 20 and 21 only)

1. Set the valves while the system is cool, setting for the coldest expected water temperature (usually 60°F since the system will often drop to room temperature between cycles).
2. Start with valve 7a fully closed and 7b fully open.
3. Gradually open valve 7a while closing valve 7b until the temperature at gauge 8 reads 130°F when gauge 4a reads 60°F.
4. Note that valve 7a regulates the amount of hot water from the boiler supply which mixes with return water. Valve 7b regulates the amount of system water flowing through the boiler secondary loop.

WARNING

Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

Radiant heating system piping should include a means of regulating the boiler return water temperature and the system supply temperature (such as provided by an injection pumping control).

Boiler return water temperature will be adequately controlled using the methods shown in this manual provided the system supply temperature is relatively constant.

DO NOT apply the methods of this manual if the system is equipped with an outdoor reset control. Instead, provide controls and piping which can regulate the boiler return water temperature at no less than 130°F regardless of system supply temperature. Contact your Weil-McLain representative for suggested piping and control methods.

Failure to prevent cold return water temperature to the boiler could cause corrosion damage to the sections or burners, resulting in possible severe personal injury, death or substantial property damage.
4d Piping — low temperature systems (continued)

1. Boiler isolation (balancing) valves
2. Flow/check valve
3. System or zone circulator
4. System temperature gauges
5. Zone valve
6. Drain valve
7. System temperature valves (see instructions to the left for adjusting valves)
8. Blend temperature gauge
9. Relief valve
10. Automatic air vent (with diaphragm-type expansion tank), or connect to tank fitting (closed-type expansion tank). **DO NOT** use an automatic air vent when using closed-type expansion tank. It would allow air to leave the system, causing waterlogging of the expansion tank.
11. Fill valve
12. Diaphragm-type or bladder-type expansion tank, if used (For closed-type expansion tank, pipe from top of air separator to tank fitting as in Figure 17.)
13. Air separator and automatic vent, if used (Note that the fill valve must always be connected to the expansion tank, regardless of location of expansion tank, circulator or air separator.)
BOILER-bypass piping method

This piping method (Figure 22 or 23) is called a boiler-bypass because part of the circulator flow is bypassed around the boiler (through valve 7a). This method reduces the flow rate throughout the boiler, in order to raise the average water temperature in the boiler enough to prevent flue gas condensation. Boiler-bypass piping is effective for some boilers — including the CGi — provided the flow rates are adjusted according to the instructions following.

Figures 22 and 23 are alternative piping suggestions for converted gravity (large water content or steam systems) or radiant heating system — for use when primary/secondary piping can't be applied. (Figure 24 is another alternative, using system bypass in place of boiler-bypass piping. Figure 24 however, is not suitable for radiant heating applications because it does not protect the radiant system from possible high water temperature.)

Boiler-bypass piping keeps system flow rate as high as possible and temperature drop as low as possible, helping to equalize the building heat distribution.

Temperature gauges

Gauge 4a is optional if the bypass valves will be adjusted using cold (or room temperature) return water to the boiler. (When setting the valves without gauge 4a installed — using cold or room temperature water — assume the return water temperature to be 60°F. Set the valves so gauge 8 reads at least 120°F.)

Gauge 4b is optional on converted gravity systems, but required on radiant heating systems — to display the water temperature being supplied to the radiant tubing.

Gauge 8 is required on all systems to assure reliable adjustment of the bypass valves. The boiler-mounted temperature/pressure gauge can be used if a separate temperature gauge is not installed.

Valve adjustment

1. Start with valve 7a fully closed and 7b fully open.
2. Gradually open valve 7a while closing valve 7b until the temperature at gauge 8 reads 60°F higher than gauge 4a. A minimum 60°F temperature rise through the boiler assures a low enough flow rate and high enough average temperature to prevent condensation even with low system return water temperature.
3. Valve 7a regulates the system flow rate, while valve 7b regulates the boiler flow rate.
4. The boiler-mounted temperature/pressure gauge may be used in place of a separate gauge 8.

WARNING

Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

Radiant heating system piping should include a means of regulating the boiler return water temperature and the system supply temperature (such as provided by an injection pumping control).

Boiler return water temperature will be adequately controlled using the methods shown in this manual provided the system supply temperature is relatively constant.

DO NOT apply the methods of this manual if the system is equipped with an outdoor reset control. Instead, provide controls and piping which can regulate the boiler return water temperature at no less than 130°F regardless of system supply temperature. Contact your Weil-McLain representative for suggested piping and control methods.

Failure to prevent cold return water temperature to the boiler could cause corrosion damage to the sections or burners, resulting in possible severe personal injury, death or substantial property damage.
Piping — low temperature systems (continued)

1. Boiler isolation (balancing) valves
2. Flow/check valve
3. System or zone circulator
4. System temperature gauges
5. Zone valve
6. Drain valve
7. System temperature valves (see instructions to the left for adjusting valves)
8. Blend temperature gauge
9. Relief valve
10. Automatic air vent (with diaphragm-type expansion tank), or connect to tank fitting (closed-type expansion tank). **DO NOT** use an automatic air vent when using closed-type expansion tank. It would allow air to leave the system, causing waterlogging of the expansion tank.
11. Fill valve
12. Diaphragm-type or bladder-type expansion tank, if used (For closed-type expansion tank, pipe from top of air separator to tank fitting as in Figure 17, page 21).
13. Air separator and automatic vent, if used (Note that the fill valve must always be connected to the expansion tank, regardless of location of expansion tank, circulator or air separator.)
SYSTEM-bypass piping method

This piping method is called a system-bypass because part of the circulator flow bypasses the system (through valve 7a). This bypassed hot water from the boiler outlet mixes with cooler system return water temperature in order to provide minimum 130°F return water to the boiler. Valve 7b will most often be full open, but may need to be slightly closed on some low pressure drop systems in order to cause enough flow through valve 7a.

Figure 24 is an alternative piping method that provides return water temperature control for boilers installed on converted gravity systems (large water content or steam systems).

Do not apply the piping of Figure 24 on radiant heating systems. It provides no method regulating the water temperature provided to the system and could result in excessive water temperature in the radiant tubing.

System-bypass piping as shown in Figure 24 can be used with either zone valve or circulator zoning. When used with circulator zoning however, the boiler circulator (item 3), must be piped as shown. It cannot be used as one of the zoning circulators.

Do not apply system-bypass piping if the reduced flow in the system could cause poor heat distribution. That is, system-bypass piping reduces the flow in the system and increases the water temperature supplied to the system. This can cause increased heat from radiators at the beginning of the system and reduced heat from radiators near the end of the system.

Valve adjustment

1. Start with valve 7a fully closed and 7b fully open.
2. Gradually open valve 7a while closing valve 7b until the temperature at gauge 8 reads at least 130°F at all times.
3. Valve 7a regulates the amount of boiler supply water mixed with return water. Valve 7b causes a pressure drop in the system needed to balance flow through valve 7a and the system.
4. The valve adjustment should be done with the system at the coldest expected temperature (60°F for converted gravity systems or high mass radiant systems).

Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

Radiant heating system piping should include a means of regulating the boiler return water temperature and the system supply temperature (such as provided by an injection pumping control).

Boiler return water temperature will be adequately controlled using the methods shown in this manual provided the system supply temperature is relatively constant. DO NOT apply the methods of this manual if the system is equipped with an outdoor reset control. Instead, provide controls and piping which can regulate the boiler return water temperature at no less than 130°F regardless of system supply temperature. Contact your Weil-McLain representative for suggested piping and control methods.

Failure to prevent cold return water temperature to the boiler could cause corrosion damage to the sections or burners, resulting in possible severe personal injury, death or substantial property damage.
4d Piping — low temperature systems (continued)

![Diagram](image)

3 System or zone circulator
7 System temperature valves (see instructions to the left for adjusting valves)
8 Blend temperature gauge
9 Relief valve
10 Automatic air vent (with diaphragm-type expansion tank), or connect to tank fitting (closed-type expansion tank). **DO NOT** use an automatic air vent when using closed-type expansion tank. It would allow air to leave the system, causing waterlogging of the expansion tank.
11 Fill valve
12 Diaphragm-type or bladder-type expansion tank, if used (For closed-type expansion tank, pipe from top of air separator to tank fitting as in **Figure 17**, page 21.)

Figure 24 System-bypass piping — Zoning with zone valve or circulators, return water 130°F or higher — (Alternative to boiler-bypass piping Figures 22 and 23)

4e Water piping — refrigeration system

![Diagram](image)

Prevent chilled water from entering boiler

- **WARNING** Install boiler so that chilled medium is piped in parallel with the heating boiler. Use appropriate valves to prevent chilled medium from entering boiler. See Figure 18 for typical installation of balancing valve and check valve.
- **WARNING** If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves (see Figure 25) or other automatic means to prevent gravity circulation during cooling cycle.
Connecting gas supply piping to boiler

1. Remove jacket front panel and refer to Figure 26 to pipe gas to boiler.
 a. Install drip leg at inlet of gas connection to boiler. Where local utility requires drip leg to be extended to the floor, use appropriate length of pipe between cap and tee.
 b. Install ground joint union for servicing, when required.
 c. Install manual shutoff valve in gas supply piping outside boiler jacket when required by local codes or utility requirements.
 d. In Canada — When using manual main shutoff valve, it must be identified by the installer.
2. Support piping with hangers, not by boiler or its accessories.
3. Purge all air from gas supply piping.
 a. Close manual main shutoff valve during any pressure testing at less than 13” w.c.
 b. Disconnect boiler and gas valve from gas supply piping during any pressure testing greater than 13” w.c.

WARNING Do not check for gas leaks with an open flame — use bubble test. Failure to use bubble test or check for gas leaks can cause severe personal injury, death or substantial property damage.

5. Use pipe dope compatible with propane gases. Apply sparingly only to male threads of pipe joints so that pipe dope does not block gas flow.

WARNING Failure to apply pipe dope as detailed above can result in severe personal injury, death or substantial property damage.

Natural Gas:

1. Refer to Table 7 for pipe length and diameter. Base on rated boiler input (divide by 1,000 to obtain cubic feet per hour). Table 7 is only for gas with specific gravity 0.60, with a pressure drop through the gas piping of 0.30” w.c. For additional gas pipe sizing information, refer to ANSI Z223.1/NFPA 54 (or B149.1 or B149.2 for Canadian Natural Gas and Propane Installation Code).
2. Inlet pressure required at gas valve inlet:
 - Maximum: 13” w.c.
 - Minimum: 5” w.c.
 - Manifold gas pressure: 3.5” w.c.
3. Install 100% lockup gas pressure regulator in supply line if inlet pressure exceeds 13” w.c. Adjust for 13” w.c. maximum.

Propane Gas:

1. Contact gas supplier to size pipes, tanks and 100% lockup gas pressure regulator.
2. Adjust propane supply regulator provided by gas supplier for 13” w.c. maximum pressure.
3. Inlet pressure required at gas valve inlet:
 - Maximum: 13” w.c.
 - Minimum: 11” w.c.
 - Manifold gas pressure: 10” w.c.

Table 7 Pipe capacity for 0.60 specific gravity natural gas

<table>
<thead>
<tr>
<th>Gas pipe length (feet)</th>
<th>Capacity of pipe for pipe size of: (Capacity in cubic feet gas per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>½”</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>150</td>
<td>31</td>
</tr>
</tbody>
</table>

Figure 26 Gas supply piping
Field wiring

For your safety, turn off electrical power supply at service entrance panel before making any electrical connections to avoid possible electric shock hazard. Failure to do so can cause severe personal injury or death.

Wiring must be N.E.C. Class 1.
If original rollout thermal fuse element wire as supplied with boiler must be replaced, use only type 200°C wire or equivalent. If other original wiring as supplied with boiler must be replaced, type 105°C wire or equivalent must be used. Boiler must be electrically grounded as required by National Electrical Code ANSI/NFPA 70 – latest edition.

Electrical installation must comply with:
1. National Electrical Code and any other national, state, provincial or local codes or regulations.
2. In Canada, CSA C22.1 Canadian Electrical Code Part 1, and any local codes.

Wiring connections
Boiler is shipped with controls completely wired.

Thermostat
1. Connect thermostat as shown on wiring diagram on boiler.
2. Install on inside wall away from influences of drafts, hot or cold water pipes, lighting fixtures, television, sun rays, or fireplaces.
3. If thermostat has a heat anticipator, set heat anticipator in thermostat to match power requirements of equipment connected to it. If connected directly to boiler, set for 0.1 amps plus gas valve current. See information on wiring diagram as shown in Figure 32, page 39. For other devices, refer to manufacturer’s specifications. Wiring diagram on boiler gives setting for control module and gas valve. Also see instructions with thermostat.

DHW
1. Connect DHW aquastat as shown in wiring below. Economy function isn’t utilized with DHW input.

Junction Box (furnished)
1. Connect 120 VAC power wiring as shown in Figure 27.
2. Fused disconnect or service switch (15 amp. recommended) may be mounted on this box. For those installations with local codes which prohibit installation of fused disconnect or service switch on boiler, install a 2 x 4 cover plate on the boiler junction box and mount the service switch remotely as required by the code.

Wiring multiple zones
Refer to zone valve manufacturer’s literature for wiring and application. A separate transformer is required to power zone valves. Zoning with circulators requires a relay for each circulator.

CAUTION
DO NOT connect directly from 3-wire zone valves to the T-T terminals on the boiler. When using 3-wire zone valves, install an isolation relay. Connect the zone valve end switch wires to the isolation relay coil. Connect the isolation relay contact across the boiler T-T terminals. Failure to comply can result in damage to boiler components or cause unreliable operation, resulting in severe property damage.

The CGi control module is polarity-sensitive. The hot and neutral wires must be connected to the correct leads. A flashing POWER light usually indicates reversed polarity of 120 VAC lead wires.

Figure 27
Field wiring connections — service switch, DHW (if used) and thermostat (or end switch) provided by installer
7a Start-up — preparation

Check for gas leaks

WARNING Before starting the boiler, and during initial operation, smell near the floor and around the boiler for gas odorant or any unusual odor. Do not proceed with start-up if there is any indication of a gas leak. Repair any leak at once.

WARNING Propane boilers only — Your propane supplier mixes an odorant with the propane to make its presence detectable. In some instances, the odorant can fade and the gas may no longer have an odor.

- Propane gas can accumulate at floor level. Smell near the floor for the gas odorant or any unusual odor. If you suspect a leak, do not attempt to light the pilot.
- Use caution when attempting to light the propane pilot. This should be done by a qualified service technician, particularly if pilot outages are common.
- Periodically check the odorant level of your gas.
- Inspect boiler and system at least yearly to make sure all gas piping is leak-tight.
- Consult your propane supplier regarding installation of a gas leak detector. There are some products on the market intended for this purpose. Your supplier may be able to suggest an appropriate device.

Determine if water treatment is needed

WARNING Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

Eliminate all system leaks. Continual fresh makeup water will reduce boiler life. Minerals can build up in sections, reducing heat transfer, overheating cast iron, and causing section failure.

Verify water chemistry

Consult local water treatment companies for unusually hard water areas (above 7 grains hardness) or low pH water conditions (below 7.0). Boiler water pH of 7.0 to 8.5 is recommended.

Freeze protection (when used)

Use antifreeze made especially for hydronic systems. Inhibited propylene glycol is recommended.

WARNING Do not use ethylene glycol, automotive or undiluted antifreeze. Severe personal injury or death can result.

1. Determine antifreeze quantity according to system water content. Boiler water content is listed on page 70. Remember to include expansion tank water content.
2. Follow antifreeze manufacturer’s instructions.
3. A 50% solution of propylene glycol/water provides maximum protection to about -30°F.
4. Local codes may require back flow preventer or actual disconnect from city water supply.
5. When using antifreeze in a system with automatic fill, install a water meter to monitor water makeup. Glycol will leak before the water begins to leak, causing glycol level to drop. Added water will dilute the antifreeze, reducing the freeze protection level.
Fill the system with water

1. Close manual and automatic air vents and boiler drain cock.

2. Fill to correct system pressure. Correct pressure will vary with each application. Typical cold water fill pressure for a residential system is 12 psi.

3. Purge air from system:
 a. Connect a hose to the purge valve (see drain valves, item 6, in suggested piping diagrams on pages 23 through 27, Figure 18 through Figure 23). Route hose to an area where water can drain and be seen.
 b. Close the boiler or system isolation valve between the purge valve and fill connection to the system.
 c. Close zone isolation valves.
 d. Open quick-fill valve on cold water makeup line.
 e. Open purge valve.
 f. One zone at a time, open the isolation valves. Allow water to run through the zone, pushing out the air. Run until no noticeable air flow is present. Close the zone isolation valves and proceed with the next zone. Follow this procedure until all zones are purged.
 g. Close the quick-fill water valve and purge valve and remove the hose. Open all isolation valves. Watch that system pressure rises to correct cold-fill pressure.
 h. After the system has operated for a while, eliminate any residual air by using the manual air vents located throughout the system.
 i. If purge valves are not installed in system, open manual air vents in system one at a time, beginning with lowest floor. Close vent when water squirts out. Repeat with remaining vents.

4. Open automatic air vent (diaphragm-type or bladder-type expansion tank systems only) one turn.

5. Open other vents:
 a. Starting on the lowest floor, open air vents one at a time until water squirts out.
 b. Repeat with remaining vents.

6. Refill to correct pressure.

Inspect system water piping

After filling the boiler and system with water, inspect all piping throughout the system for leaks. If found, repair immediately. Repeat this inspection after the boiler has been started and the system has heated up.

⚠️ WARNING
Leaks must be repaired at once. Failure to do so can damage the boiler, resulting in substantial property damage.

⚠️ DANGER
Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

Inspect base insulation

⚠️ WARNING
The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 71 of this manual. Failure to comply could result in severe personal injury.

Failure to replace damaged insulation or reposition insulation can result in a fire hazard, causing severe personal injury, death or substantial property damage.

Check to make sure base insulation is secure against all four sides of the base. If insulation is damaged or displaced, do not operate boiler. Replace or reposition insulation.
7b Start-up — operate boiler

WARNING
DO NOT proceed with boiler operation unless boiler and system have been filled with water and all instructions and procedures of previous manual sections have been completed. Failure to do so could result in severe personal injury, death or substantial property damage. Before starting the boiler, do the following:

- Read manual Section 9 and the Operating instruction procedure applicable for the gas valve supplied on the boiler (Section 9c).
- Verify the boiler and system are full of water.
- Verify the Start-up preparation procedures of Section 7 have been completed.

Adjust boiler control settings

BOILER OPERATING TEMPERATURE

With power turned on, control module receives a signal from the temperature sensor and displays boiler temperature. The control knob labeled BOILER TEMP is used to adjust the operating temperature setpoint, turning clockwise to increase temperature setting and counterclockwise to decrease. When the knob is turned to adjust temperature the display will brighten to indicate adjustment mode. After temperature is set to desired value, display will dim after approximately 5 seconds to indicate measurement mode.

- **ADJUST BOILER OPERATING TEMPERATURE TO DESIRED SETPOINT.**

BOILER ECONOMY SETTING

To comply with Department of Energy regulations, the control module circulates available hot water before turning on the boiler to attempt to satisfy a call for heat. While attempting to satisfy the heat demand, the control module also monitors the boiler temperature changes via the temperature sensor and determines whether or not the available hot water will satisfy the demand, adjusting the time delay to turn on the boiler until it determines that additional heat will be needed. The knob labeled ECONOMY ADJUST provides an adjustment between maximize (MAX) and minimize (MIN) the delay. The maximum (MAX) adjustment position should be used to maximize energy savings. Turning the knob counterclockwise decreases the delay time and should only be used in the event that the heated space becomes uncomfortable.

- **ADJUST ECONOMY TO DESIRED POSITION.**

IMPORTANT

In accordance with Section 325 (f) (3) of the Energy Policy and Conservation Act, this boiler is equipped with a feature that saves energy by reducing the boiler water temperature as the heating load decreases. This feature is equipped with an override which is provided primarily to permit the use of an external energy management system that serves the same function.

- **ADJUST ECONOMY TO DESIRED POSITION.**

This override must not be used unless at least one of the following conditions is true:

- An external energy management system is installed that reduces the boiler water temperature as the heating load decreases.
- This boiler is part of a modular or multiple boiler system having a total input of 300,000 BTU/hr or greater.
- This boiler is equipped with a tankless coil.

WARNING

If you discover evidence of any gas leak, shut down the boiler at once. Find the leak source with bubble test and repair immediately. Do not start boiler again until corrected. Failure to comply could result in severe personal injury, death or substantial property damage.

WARNING

Eliminate all system leaks. Continual fresh makeup water will reduce boiler life. Minerals can build up in sections, reducing heat transfer, overheating cast iron, and causing section failure.

WARNING

Glycol or antifreeze leaks around the boiler may result in fire, causing severe personal injury, death or substantial property damage.

DANGER

Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.
7b Start-up — operate boiler (continued)

Start the boiler

• Follow the Operating instructions from Section 9c to start the boiler.
• See Section 7c if boiler fails to start.

Check system and boiler

1. Check system piping for leaks. If found, shut down boiler and repair immediately.
2. Vent air from system using manual vents. Air in the system will interfere with circulation and cause heat distribution problems and noise.
3. Inspect vent system thoroughly for signs of deterioration from corrosion, physical damage or sagging. In addition — Check for gas-tight seal at every connection and seam.

Venting system must be sealed gas-tight to prevent flue gas spillage and carbon monoxide emissions which will result in severe personal injury or death.

4. Check around the boiler for gas odor following the procedure of Section 7a of this manual.
5. Verify operation per Section 7b. Perform check-out procedure in Section 8, and fill in the Installation and service certificate on the same page.

Check burner flames

View pilot and main flames through the inspection port in the base burner shield.

Pilot burner flame (Figure 28)

PROPER pilot flame characteristics

1. Blue flame.
2. Inner cone engulfing pilot flame sensor.
3. Pilot flame sensor glowing cherry red.

IMPROPER pilot flame characteristics

1. Overfired — Large flame lifting or blowing past pilot flame sensor.
2. Underfired — Small flame. Inner cone not engulfing pilot flame sensor.
3. Lack of primary air — Yellow flame tip.
4. Incorrectly heated pilot flame sensor.

Main burner flame (Figure 29)

PROPER main burner flame characteristics

1. Yellow-orange streaks may appear (caused by dust).

IMPROPER main burner flame characteristics

1. Overfired — Large flames.
2. Underfired — Small flames.
3. Lack of primary air — Yellow tipping on flames (sooting will occur).

7c Start-up — if boiler doesn’t start . . .

Check for:

1. Loose connections, blown fuse or service switch off?
2. High limit switch set below boiler water temperature?
3. Thermostat set below room temperature?
4. Gas not turned on at meter or boiler?
5. Incoming gas pressure less than:
 5” w.c. for natural gas? 11” w.c. for propane gas?
6. If none of the above corrects the problem, refer to Troubleshooting, section 11 of this manual.
Check-out procedure — checklist

- Boiler and heat distribution units filled with water?
- Automatic air vent, if used, open one full turn?
- Air purged from system?
- Air purged from gas piping? Piping checked for leaks?
- Correctly sized manifold orifices installed? Refer to Table 2, page 12, to check size and fuel type.

DANGER
Correctly sized manifold orifices must be used. Failure to do so will cause severe personal injury, death or substantial property damage.

- Followed operating instructions on boiler or in manual Section 9 for proper start-up?
- Proper burner flame observed? Refer to Check burner flame, manual Section 7b.
- Test temperature limit — While burners are operating, turn Boiler Temp adjustment knob counterclockwise until display reading is below actual boiler water temperature. Burners should go off while circulator continues to operate. Turn Boiler Temp adjustment knob clockwise until display reading is above boiler water temperature and ignition sequence should resume.
- Test additional field-installed controls — If boiler has a low water cutoff, additional high limit or other controls, test for operation as outlined by manufacturer. Burners should be operating and should go off when controls are tested. When controls are restored, burners should reignite.
- Test ignition system safety device:
 a. Connect manometer to outlet side of gas valve.
 b. Start boiler, allowing for normal start-up cycle to occur and main burners to ignite.
 c. With main burners on, manually shut off gas supply at manual main shutoff gas valve. Burners should go off.
 d. Open manual main shutoff gas valve. Manometer should confirm there is no gas flow.
 e. Pilot will relight, flame sensing element will sense pilot flame and main burners will reignite.

- Set limit control(s) to system temperature requirements. Adjust balancing valves and controls to provide design temperature to system.
- For multiple zones, adjust flow so it is about the same in each zone.
- Verify thermostat heat anticipator (if available) set properly? Refer to Field wiring, manual Section 6, page 31, Thermostat(s).
- Cycle boiler with thermostat — Raise to highest setting and verify boiler goes through normal start-up cycle. Lower to lowest setting and verify boiler goes off.
- Cycle DHW Aquastat if used.
- Measure natural gas input:
 a. Operate boiler 10 minutes.
 b. Turn off other appliances.
 c. At natural gas meter, measure time (in seconds) required to use one cubic foot of gas.
 d. Calculate gas input:

\[
\frac{3600 \times 1000}{\text{number of seconds from step } c} = \text{Btu}h
\]

 e. Btu calculated should approximate input rating on boiler rating label.
- Check manifold gas pressure by connecting manometer to downstream test tapping on main gas valve. Manifold pressure for natural gas should be 3.5" w.c. and for propane gas should be 10" w.c.
- Observe several operating cycles for proper operation.
- Set room thermostat to desired room temperature.
- Fill in Installation and service certificate below?
- Review all instructions shipped with this boiler with owner or maintenance person. Return instructions to envelope and give to owner or place in pocket inside front panel in boiler.

Installation and service certificate

<table>
<thead>
<tr>
<th>Boiler model</th>
<th>Series</th>
<th>CP number</th>
<th>Date installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________________</td>
<td>______</td>
<td>__________</td>
<td>__________</td>
</tr>
<tr>
<td>Measured Btuh input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installer __________________ (company) __________________ (address) __________________ (phone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installer’s signature: __________________</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Installation instructions have been followed.
Check out sequence has been performed.
Above information is certified to be correct.
Information received and left with owner/maintenance person
This boiler is equipped with a control system that automatically adjusts a time delay period to turn on the boiler during a call for heat. This is accomplished by circulating available hot water in the system while measuring water boiler water temperature changes. The control calculates a suitable delay based on temperature measurements and turns the boiler on only after it determines that the demand for heat cannot be satisfied with the available hot water.

Due to the wide variety of controls used in boiler installations, this control is also equipped with an adjustment for the calculated time delay period (ECONOMY ADJUST). In the MIN position, the time delay is zero and the IMPORTANT notice below must be observed:

IMPORTANT

In accordance with Section 325 (f) (3) of the Energy Policy and Conservation Act, this boiler is equipped with a feature that saves energy by reducing the boiler water temperature as the heating load decreases. This feature is equipped with an override which is provided primarily to permit the use of an external energy management system that serves the same function.

THIS OVERRIDE MUST NOT BE USED UNLESS AT LEAST ONE OF THE FOLLOWING CONDITIONS IS TRUE:

- An external energy management system is installed that reduces the boiler water temperature as the heating load decreases.
- This boiler is part of a modular or multiple boiler system having a total input of 300,000 BTU/hr or greater.
- This boiler is equipped with a tankless coil.

Operation — sequence

1. **Read Operating instructions** on page 41. This information is also located on a label on the inside of the boiler jacket door panel.

2. **Raise** room thermostat to call for heat.
 a. While attempting to satisfy the heat demand, the control module monitors the boiler temperature changes via the water temperature sensor and determines whether or not the available hot water will satisfy the demand, only running the circulator. If additional heat is needed, the sequence continues. When DHW (if used) calls for heat, sequence above is bypassed.

3. **Circulator energizes**. If limit circuit is closed, the inducer starts. After pressure switch proves proper airflow, control module initiates 10-second prepurge.

4. **Control module sparks** the pilot and opens pilot valve in main gas valve.
 a. If pilot does not light within 15 seconds, pilot valve is closed and spark generator is turned off. Control module initiates a 15-second postpurge, then starts a new cycle.

 b. If pilot does light and control module senses flame current, spark generator is turned off and main valve opens.

5. During main burner operation:
 a. Control module monitors pilot flame current. If signal is lost, main valve closes, spark generator activates and sequence returns to step 4.
 b. If power is interrupted, control system shuts off pilot and main gas valves and restarts at step 1 when power is restored.

6. In the event the **limit control shuts down the boiler** — The control module closes the pilot and main gas valves, but keeps the inducer operating for 15-second postpurge.
9a Operation — sequence (continued)

— The circulator continues to operate.

8. **Lower** room thermostat setting to stop call for heat. Thermostat is satisfied — Pilot and main gas valves are closed — Inducer operates for 15-second postpurge — Circulator is shut off.

9. Boiler is now in the **off cycle**.

10. **Repeat** steps 1 through 6 several times to verify operation.

11. **Return** the thermostat to normal setting.

12. Set thermostat heat anticipator setting as instructed in **Figure 32**, page 40.

Figure 30 Control module sequence of operation — status light indications

<table>
<thead>
<tr>
<th>STEPS</th>
<th>Call for Heat?</th>
<th>POWER</th>
<th>TSTAT CIRC</th>
<th>LIMIT</th>
<th>PURGE</th>
<th>FLAME</th>
<th>SENSOR GND</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Standby</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Call for heat</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Limit circuit</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Inducer</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Pressure circuit</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35 sec</td>
<td></td>
</tr>
<tr>
<td>6. Flame proven *</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Limit cycle</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Flame outage *</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Thermostat satisfied</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>10. Circulator exercise routine</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>11. Sensor ground</td>
<td>YES/NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Section 9, Items 4b for controls response to failure to prove pilot flame.

Control will lockout under the following conditions:
- Line voltage polarity is reversed
- Stray voltage is sensed on thermostat line
- Flame is sensed when it shouldn’t be there

Control will reset after these lockouts if any of the following occur:
- 1 hour waiting period
- Opening and closing of thermostat circuit for 2 to 20 seconds
- Removal of 120 VAC power for 2 to 20 seconds
DO NOT connect directly from 3-wire zone valves to the T-T terminals on the boiler.

When using 3-wire zone valves, install an isolation relay. Connect the zone valve end switch wires to the isolation relay coil. Connect the isolation relay contact across the boiler T-T terminals. Failure to comply can result in damage to boiler components or cause unreliable operation, resulting in possible severe property damage.

NOTICE

- The control module is polarity-sensitive to the incoming 120 VAC power. If polarity is reversed, control will flash the **POWER** light when powered and will not cycle boiler.
- All contacts shown without power applied.
- Connector and status light locations/orientations may vary.
WARNING

Electrical shock hazard — can cause severe injury or death. Disconnect power before installing or servicing.

Legend for ladder wiring diagram

- **120 VAC field wiring**
- **Low voltage field wiring**
- **120 VAC factory wiring**
- **Low voltage factory wiring**
- **High voltage spark ignition wiring**
- **Ground connectors**

Table G: Gas valve terminals and anticipator settings

<table>
<thead>
<tr>
<th>Gas valve</th>
<th>"A"</th>
<th>"B"</th>
<th>"C"</th>
<th>Anticipator amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell VR8204</td>
<td>MV</td>
<td>PV</td>
<td>PV</td>
<td>0.6</td>
</tr>
<tr>
<td>Honeywell VR8304</td>
<td>MV</td>
<td>PV</td>
<td>PV</td>
<td>0.8</td>
</tr>
<tr>
<td>White-Rodgers 36E</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.64</td>
</tr>
<tr>
<td>White-Rodgers 36C</td>
<td>2–4</td>
<td>1</td>
<td>3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Terminals 2–4 are factory-jumpered on the White-Rodgers 36C gas valve.

1. All wiring must be installed in accordance with:
 A. U.S.A. — N.E.C. And any other national, state, or local code requirements. Boiler must be electrically grounded as required by National Electrical Code ANSI/NFPA 70 - latest edition.
 B. Canada — C.S.A. C22.1 C.E.C. Part 1 and any other national, provincial, or local code requirements.

2. Pilot lead wires are not field replaceable. Replace pilot assembly if necessary.

3. If any of the original wire as supplied with the appliance must be replaced, use minimum 105 °C wire or equivalent. Exception — wires to a rollout TFE must be 200 °C or equivalent.

4. Thermostat anticipator setting (single zone) — see Table G for anticipator setting, depending on which gas valve is installed in boiler.

5. For multiple zoning, use either zone valves or circulators. Refer to the component manufacturer's instructions and this manual for application and wiring suggestions.

6. Refer to control component instructions packed with the boiler for application information.

7. Wire any additional limit controls (low water cut-off, additional high limit, etc.) in series with boiler rollout TFE and spill switch as shown.
FOR YOUR SAFETY READ BEFORE OPERATING

WARNING If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.
B. BEFORE OPERATING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.
C. Use only your hand to turn the gas control knob. Never use tools. If the knob will not turn by hand, don't try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.
D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electric switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor's phone.
- Follow the gas supplier's instructions.
- If you cannot reach your gas supplier, call the fire department.

OPERATING INSTRUCTIONS

1. STOP! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. Turn off all electrical power to the appliance.
4. Remove front panel.
5. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.
6. Turn gas control knob clockwise to “OFF.”
7. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor. If you smell gas, STOP! Follow “B” in the safety information above. If you don't smell gas, go to the next step.
8. Turn gas control knob counterclockwise to “ON.”
9. Turn on all electric power to the appliance.
10. Set thermostat to desired setting.
11. If the appliance will not operate, follow the instructions “To Turn Off Gas To The Appliance” and call your service technician or gas supplier.
12. Replace front panel.

TO TURN OFF GAS TO THE APPLIANCE

1. Set the thermostat to lowest setting.
2. Turn off all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Turn gas control knob clockwise to “OFF.” Do not force.
5. Replace front panel.
FOR YOUR SAFETY READ BEFORE OPERATING

WARNING If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.

B. BEFORE OPERATING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.

C. Use only your hand to turn the gas control knob. Never use tools. If the knob will not turn by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.

D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

WHAT TO DO IF YOU SMELL GAS

• Do not try to light any appliance.
• Do not touch any electric switch; do not use any phone in your building.
• Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
• If you cannot reach your gas supplier, call the fire department.

OPERATING INSTRUCTIONS

1. STOP! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. Turn off all electrical power to the appliance.
4. Remove front panel.
5. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.
6. Turn gas control knob clockwise to “OFF.”

7. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor. If you smell gas, STOP! Follow “B” in the safety information above. If you don’t smell gas, go to the next step.
8. Turn gas control knob counterclockwise to “ON.”
9. Turn on all electric power to the appliance.
10. Set thermostat to desired setting.
11. If the appliance will not operate, follow the instructions “To Turn Off Gas To The Appliance” and call your service technician or gas supplier.
12. Replace front panel.

TO TURN OFF GAS TO THE APPLIANCE

1. Set the thermostat to lowest setting.
2. Turn off all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Turn gas control knob clockwise to “OFF.” Do not force.
5. Replace front panel.
FOR YOUR SAFETY READ BEFORE OPERATING

WARNING If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.

B. BEFORE OPERATING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electric switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
- If you cannot reach your gas supplier, call the fire department.

OPERATING INSTRUCTIONS

1. STOP! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. Turn off all electrical power to the appliance.
4. Remove front panel.
5. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.
6. Depress gas control knob slightly and turn clockwise \(\wedge \) to “OFF.” Note: Knob cannot be turned to “OFF” unless knob is depressed slightly. Do not force.
7. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor. If you smell gas, STOP! Follow “B” in the safety information above. If you don’t smell gas, go to the next step.
8. Turn gas control knob counterclockwise \(\wedge \) to “ON.”
9. Turn on all electric power to the appliance.
10. Set thermostat to desired setting.
11. If the appliance will not operate, follow the instructions “To Turn Off Gas To The Appliance” and call your service technician or gas supplier.
12. Replace front panel.

TO TURN OFF GAS TO THE APPLIANCE

1. Set the thermostat to lowest setting.
2. Turn off all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Depress gas control knob slightly and turn clockwise \(\wedge \) to “OFF.” Do not force.
5. Replace front panel.

550-223-043(0906)
Service and maintenance — schedule

<table>
<thead>
<tr>
<th>Service technician (see following pages for instructions)</th>
<th>Owner maintenance (see CGi User’s Information Manual for instructions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspect:</td>
<td>Daily</td>
</tr>
<tr>
<td>• Reported problems</td>
<td>• Check boiler area</td>
</tr>
<tr>
<td>• Boiler area</td>
<td>• Check air openings</td>
</tr>
<tr>
<td>• Air openings</td>
<td>• Check boiler pressure temperature gauge</td>
</tr>
<tr>
<td>• Flue gas vent system (and air piping)</td>
<td></td>
</tr>
<tr>
<td>• Pilot and main burner flames</td>
<td></td>
</tr>
<tr>
<td>• Water piping</td>
<td></td>
</tr>
<tr>
<td>• Boiler heating surfaces</td>
<td></td>
</tr>
<tr>
<td>• Burners, base and inlet air box</td>
<td></td>
</tr>
<tr>
<td>• Condensate drain system</td>
<td></td>
</tr>
<tr>
<td>Service:</td>
<td>Monthly</td>
</tr>
<tr>
<td>• Inducer motor</td>
<td>• Check boiler interior piping</td>
</tr>
<tr>
<td>• Oiled-bearing circulators</td>
<td>• Check venting system</td>
</tr>
<tr>
<td>• Temperature sensor</td>
<td>• Check air vents</td>
</tr>
<tr>
<td>Start-up:</td>
<td>• Check boiler relief valve</td>
</tr>
<tr>
<td>• Perform start-up per manual</td>
<td>• Check condensate drain system</td>
</tr>
<tr>
<td>Check/test:</td>
<td>• Check automatic air vents (if used)</td>
</tr>
<tr>
<td>• Gas piping</td>
<td></td>
</tr>
<tr>
<td>• Cold fill and operating pressures</td>
<td></td>
</tr>
<tr>
<td>• Air vents and air elimination</td>
<td></td>
</tr>
<tr>
<td>• Limit controls and cutoffs</td>
<td></td>
</tr>
<tr>
<td>• Expansion tank</td>
<td></td>
</tr>
<tr>
<td>• Boiler relief valve</td>
<td></td>
</tr>
<tr>
<td>Review:</td>
<td>Periodically</td>
</tr>
<tr>
<td>• Review with owner</td>
<td>• Test low water cutoff (if used)</td>
</tr>
<tr>
<td>ANNUAL START-UP</td>
<td></td>
</tr>
<tr>
<td>Every 6 months</td>
<td>• Oil inducer motor</td>
</tr>
<tr>
<td></td>
<td>• Operate relief valve</td>
</tr>
<tr>
<td>End of season</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Shut down procedure</td>
</tr>
</tbody>
</table>

Follow the Service and maintenance procedures given throughout this manual and in component literature shipped with the boiler. Failure to perform the service and maintenance could result in damage to the boiler or system. Failure to follow the directions in this manual and component literature could result in severe personal injury, death or substantial property damage.
2. Verify that boiler vent discharge is clean and free of obstructions.

Flue gas vent system

1. Visually inspect entire flue gas venting system for blockage, deterioration or leakage. Repair any joints that show signs of leakage in accordance with vent manufacturer’s instructions.

Failure to inspect for the above conditions and have them repaired can result in severe personal injury or death.

Pilot and main burner flames

1. Visually inspect pilot burner and main burner flames as directed under Start-up, Section 7 of this manual.

Water piping

1. Check the boiler interior piping and all system piping for signs of leaks.

2. Repair any leaks before proceeding.

Boiler heating surfaces

1. Disconnect the vent pipe at the boiler inducer outlet connection after turning off power to the boiler.

2. Use a bright light to inspect the flue pipe interior and inducer interior.

3. Inspect the boiler vent outlet area and heating surfaces by looking through the opening.

4. If the vent pipe or inducer interior show evidence of soot, follow Cleaning boiler heating surfaces on page 48 to remove the flue collector and clean the boiler if necessary after close inspection of boiler heating surfaces. If there is evidence of rusty scale deposits, check the water piping and control system to make sure the boiler return water temperature is properly maintained (per this manual).

5. Reconnect vent to inducer outlet and replace all boiler components before returning to service.

6. Check inside and around boiler for evidence of any leaks from the boiler. If found, locate source of leaks and repair.

Inspect . . .

Reported problems
Inspect any problems reported by owner and correct before proceeding.

Boiler area

1. Verify that boiler area is free of any combustible materials, gasoline and other flammable vapors and liquids.

2. Verify that boiler area (and air intake) is free of any of the contaminants listed in Table 1 on page 9 of this manual. If any of these are present in the boiler intake air vicinity, they must be removed. If they cannot be removed, isolate the boiler and provide outside combustion air. See national, provincial or local codes for further information.

Air openings

1. Verify that combustion and ventilation air openings to the boiler room and/or building are open and unobstructed.
Inspect . . .

Burners and base

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 71 of this manual. Failure to comply could result in severe personal injury.

If insulation is damaged or displaced, do not operate the boiler. Replace or reposition insulation as necessary. Failure to replace damaged insulation can result in a fire hazard, causing severe personal injury, death or substantial property damage.

1. After turning off power to the boiler, remove the base burner shield (Figure 40, item 4, page 64).
2. Inspect burners and all other components in the boiler base.
3. If burners must be cleaned see Burner cleaning instructions below.
4. Inspect the slotted jacket cooling openings in the bottom left and right of the base pan (Figure 40, item 7, page 64).
5. Inspect the base insulation. Pay attention to the WARNING on page 71 regarding working with insulation materials. Verify that the insulation is intact and secure against all four sides of the base.

Burner cleaning instructions

Airborne materials, such as fiberglass and dust, are present during construction and remodeling. These materials can be drawn in with the combustion air and obstruct burner ports, resulting in carbon monoxide production, a fire hazard, or building freeze damage. Read and follow the WARNING on page 9. Failure to inspect and clean gas burner ports could result in severe personal injury, death or substantial property damage.

1. Remove burner shield and the base pan air baffle. Next remove the four screws securing the burner tray to the manifold and slide the burner tray out under the manifold.
2. Inspect each burner to insure that every port is completely open.
3. If any port is not completely clear, run a vacuum at the burner inlet while cleaning the burner ports with a wire brush. The vacuum will help to draw any airborne material out of the burner.
4. Reinstall components, starting with the burner tray, then the pilot bracket assembly, burner baffle, and air inlet top and front panels.
5. Follow the start-up procedure in the boiler manual.

Condensate drain system

1. Inspect condensate drain fittings and tubing. Verify that condensate can flow freely to drain.

Service . . .

Inducer motor

1. With boiler power off, place a few drops of S.A.E. 20 motor oil in each of the two oil cups.
2. Check other circulators in the system. Oil any circulators requiring oil, following circulator manufacturer’s instructions. Over-oiling will damage the circulator.

Temperature sensor

1. The temperature sensor may accumulate deposits on the probe surface. Annual inspection and cleaning of the probe will improve boiler performance.
2. Disconnect power, unplug harness from sensor.
3. a. Drain boiler water to a level below the sensor.
4. b. Remove sensor from boiler.
5. c. Wipe any built up contaminants from probe and insulator surfaces.

Start-up . . .

1. Perform all start-up procedures in Section 7 of this manual.
2. Verify cold fill pressure is correct and that fill system is working properly.
3. Verify antifreeze level (if used) is at the right concentration and that inhibitor level is correct.
4. Check gas piping per manual Sections 5 and 7a, verifying no indications of leakage and all piping and connections are in good condition.
5. Read the appropriate Operating instructions (Section 9c of this manual or on boiler label) applying to the boiler.
6. Start the boiler following the appropriate Operating instructions (Section 9c of this manual or on boiler label).
10b Service & maintenance – annual start-up (cont.)

- **Check/test . . .**

 Gas piping
 1. Sniff near floor and around boiler area for any indication of a gas leak.
 2. Test gas piping using bubble test, per Section 5 of this manual, if there is any indication of a leak.

 Cold fill and operating pressures
 1. While the system is cold, note the pressure reading on the boiler pressure/temperature gauge. Verify that cold fill pressure is correct.
 2. Watch the pressure as the boiler and system heat up to ensure pressure rise is normal. Too high a rise would indicate a waterlogged or undersized expansion tank.

 Air vents and air elimination
 1. Inspect automatic air vents (if used). Also inspect air separators to ensure they are operational.
 2. The cap must be unscrewed one turn to allow air to escape.
 3. See Figure 34. If the air vent is leaking, remove cap A and briefly push valve B and then release to clean the valve seat.
 4. Replace cap A by twisting all the way onto valve B and then unscrewing one turn.

 ![Figure 34 Automatic air vent, typical](image)

 Limit controls and cutoffs
 1. Inspect and test the boiler limit control. Verify operation by turning control set point below boiler temperature. Boiler should cycle off. Return dial to original setting.
 2. Inspect and test additional limit controls or low water cutoffs installed on system.

 Expansion tank
 1. Expansion tanks provide space for water to move in an out as the heating system water expands due to temperature increase or contracts as the water cools. Tanks may be open, closed or diaphragm or bladder type. See Section 4 of this manual for suggested best location of expansion tanks and air eliminators.

- **Open-type** — located above highest radiator or baseboard unit, usually in the attic or closet. Has a gauge glass and overflow pipe to a drain.

- **Closed-type** — welded gas tight and located above boiler. Tank is partially filled with water, leaving an air cushion for expansion.
 - Make sure this type of tank is fitted with a tank fitting, such as the B & G Tank-Trol or Taco Taco-Trol. This fitting reduces gravity circulation of air-saturated tank water back to the system and prevents the air from bubbling up through the water as it returns from the system.
 - Do not use automatic air vents in systems with closed-type tanks. The air will escape from the system instead of returning to the tank. Eventually, the tank will waterlog and no longer control pressurization. The boiler relief valve will weep frequently.

- **Diaphragm- or bladder-type** — welded gas tight with a rubber membrane to separate the tank pressurizing air and the water. May be located at any point in the system, but most often found near the boiler.
 - Systems with this type of expansion tank require at least one automatic air vent, preferably located on top of an air eliminator, as shown in examples in manual Section 4.

 2. If relief valve has tended to weep frequently, the expansion tank may be waterlogged or undersized.

- **Closed-type tank** — tank is most likely waterlogged. Install a tank fitting if not already installed. Then check fill level per fitting manufacturer’s instructions. If fill level is correct, check tank size against manufacturer’s instructions. Replace with a larger tank if necessary.

- **Diaphragm- or bladder-type** — first, check tank size to be sure it is large enough for the system. If size is too small, add additional tank(s) as necessary to provide sufficient expansion. If tank size is large enough, remove tank from system and check charge pressure (usually 12 psig for residential applications). If tank won’t hold pressure, membrane has been damaged. Replace tank.
Service & maintenance – annual start-up (cont.)

Review with owner

1. Review the User’s Information Manual with the owner.
2. Emphasize the need to perform the maintenance schedule specified in the User’s Information Manual (and in this manual as well).
3. Remind the owner of the need to call in a licensed contractor should the boiler or system exhibit any unusual behavior.
4. Remind the owner to follow the proper shutdown procedure and to schedule an annual start-up at the beginning of the next heating season.

Cleaning boiler heating surfaces

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 71 of this manual. Failure to comply could result in severe personal injury.

1. Shut down boiler:
 - Follow “To Turn Off Gas to Appliance” instructions on boiler and Operating instructions.
 - Do not drain boiler unless it will be exposed to freezing temperatures. If using antifreeze in system, do not drain.
2. Follow shutdown procedure.
3. Remove venting system connection to boiler.
4. Remove top jacket panel. Turn back insulation.
5. Remove collector box/transition assembly. Clean sealant from assembly and sections.
6. Remove radiation plates hanging between sections.
7. Remove burners from base. Brush and vacuum burners to remove all dust and lint. Verify that all burner ports are free of debris.
8. Place newspapers in base of boiler to collect soot.
9. Clean between sections with wire flue brush.
10. Remove newspaper and soot. Vacuum or brush base and surrounding area.
13. Replace insulation and jacket top panel.
14. Start up boiler following Section 7, pages 32-35 of this manual and the boiler Operating instructions. Excessive sooting indicates improper gas combustion. If found check for proper combustion and make any necessary adjustments.
11a Troubleshooting — procedure

Check the following:
1. Wire connectors to control module are securely plugged in at module and originating control.
2. Air pressure switch hoses are properly and securely plugged in and are not damaged.
3. Gas pressures:
 a. With boiler off — 13” w.c. maximum natural or propane gas pressure upstream of gas valve.
 b. With boiler on:
 • 5” w.c. minimum natural gas pressure or 11” w.c. propane gas pressure upstream of gas valve.
 • 3 ½” w.c. minimum natural gas pressure or 10” w.c. propane gas pressure downstream of gas valve — Can be adjusted by regulator on gas valve.
4. Verify gas manifold pressure (downstream of gas valve):
 a. Natural gas:
 Manifold pressure, high fire: 3.50” w.c.
 b. Propane gas:
 Manifold pressure, high fire: 10.0” w.c.
 c. If necessary, adjust gas pressure on the gas valve as shown below. After adjustments, refer to page 35 to check the flame.

Troubleshooting — components

Air pressure switch

- Make sure boiler water temperature is 100°F or cooler before starting procedure to obtain appropriate readings.
- The boiler will not operate correctly unless pressure switch hoses are correctly located. The red hose connects from the right side (negative) hose barb to the flue collector. The white hose connects from the left side (positive) hose barb of the switch to the connector box (between flue collector and inducer) as shown in Figure 36, page 50.

Check pressure switch setting
1. See Figure 36, page 50, and Table 9.
2. Remove both air pressure switch hoses from air pressure switch.
3. Install tees and tubing as shown in Figure 36, page 50, to inclined manometer.
4. Turn off gas valve and set thermostat to call for heat. Inducer will run but burners will not ignite.
5. Check for 24 VAC between both air pressure switch terminals.
Troubleshooting air pressure reading

1. If manometer reading is lower than the setpoint of the switch (see Table 9) — check for possible causes:
 - blockage in hoses
 - obstruction in inducer housing outlet
 - loose inducer wheel on motor shaft
 - inducer motor not in proper rpm
 - inducer back plate not sealed properly
 - blockage in block assembly
2. If manometer reading is above the setpoint of the switch (see Table 9), but there is not 24 VAC between both air pressure switch terminals — replace air pressure switch.

Temperature sensor

1. The boiler temperature sensor is a resistance-type device.
2. The Table 10, below shows the correct value for the sensor at various temperatures.
3. Use the resistance values at 32°F, 60°F, 70°F and 212°F to measure the sensor resistance at known temperatures (ice point, room temperature and sea level boiling point). For ice point and boiling point, insert the sensor in water at that temperature. Use an ohmmeter to read resistance value between thermistor # and thermistor common. See Figure 38, page 52, for sensor plug details.

Return to normal operation

When pressure reading is correct and air pressure switch is operating properly — remove tees and reinstall hoses to air pressure switch.

Table 9

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>Inches W.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGI-25 and CGI-3</td>
<td>1.79</td>
</tr>
<tr>
<td>CGI-4</td>
<td>1.36</td>
</tr>
<tr>
<td>CGI-5</td>
<td>1.12</td>
</tr>
<tr>
<td>CGI-6 and CGI-8</td>
<td>0.80</td>
</tr>
<tr>
<td>CGI-7</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 10 Sensor resistance values

<table>
<thead>
<tr>
<th>Temp (°F)</th>
<th>Sensor ohms Min</th>
<th>Sensor ohms Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>34265</td>
<td>37871</td>
</tr>
<tr>
<td>40</td>
<td>27834</td>
<td>30764</td>
</tr>
<tr>
<td>50</td>
<td>21630</td>
<td>23907</td>
</tr>
<tr>
<td>60</td>
<td>16944</td>
<td>18727</td>
</tr>
<tr>
<td>70</td>
<td>13372</td>
<td>14780</td>
</tr>
<tr>
<td>80</td>
<td>10629</td>
<td>11747</td>
</tr>
<tr>
<td>90</td>
<td>8504</td>
<td>9399</td>
</tr>
<tr>
<td>100</td>
<td>6847</td>
<td>7568</td>
</tr>
<tr>
<td>110</td>
<td>5545</td>
<td>6129</td>
</tr>
</tbody>
</table>
11b Troubleshooting — components (continued)

Control indicator lights — LOCKOUT modes

See Charts 1 through 8 in this section for detailed troubleshooting procedures.

Control indicator lights — HARD LOCKOUT Summary (Flashing LED’s)

MAY remove 120VAC power for more than 2 seconds to clear lockout OR ignition control will automatically restart sequence of operation after 1 hour waiting period after fault condition is cleared.

INDICATOR LIGHT CONDITION

- **POWER**
 - Flashes once per second
 - 120 VAC connection to boiler reversed or there is insufficient earth ground.

- **Flash code 2***
 - Internal fault, microprocessor or memory.

- **Flash code 3***
 - Unused.

- **Flash code 4***
 - Unused.

- **Flash code 5***
 - Internal fault, water thermistors disagree.

- **Flash code 6***
 - Internal fault, gas valve circuit.

 *Flash code pattern: POWER LED flashes 2, 3, etc. times rapidly followed by 2 seconds off, then repeats.

- **ALL LED’S FLASHING**
 - Failure to establish pilot flame after 4 attempts.

- **SOLID SENSOR GROUND LED**
 - Indicates the sensor ground wire is not grounded or the boiler has a poor ground connection or stray voltage on ground.

 - Check both sensor ground wire on the P5 connection and the boiler ground.

SOFT LOCKOUT Summary (Flashing LED’s)

MAY remove 120VAC power for more than 2 seconds, cycle thermostat for between 2 and 20 seconds, OR ignition control will automatically restart sequence of operation after 1 hour waiting period.

INDICATOR LIGHT CONDITION

- **POWER + TSTAT/CIRC**
 - High voltage detected on TSTAT circuit.

- **POWER + PURGE**
 - Pressure Switch stuck open or closed.

- **POWER + FLAME**
 - Flame sensed without call for heat or out of sequence during ignition trial.

CAUTION Summary (Flashing LED’s)

- **PURGE**
 - Pressure switch opened after it had been proven closed.

- **LIMIT**
 - Fault detected in temperature sensing hardware.

- **FLAME**
 - Flame loss or flame not sensed during trial for ignition.

- **SENSOR GROUND**
 - Three (3) rapid pulses indicates the sensor ground wire may not be connected or the boiler has a poor ground connection or stray voltage on ground.

Troubleshooting the control module

See Figure 38, for location of harness plug receptacles and plugs on the control module.
11b Troubleshooting — components (continued)

Figure 38 Control module connections

1. High voltage to pilot spark electrode

2. Transformer

3. 120 VAC IN

4. 24 VAC control circuits

5. TSTAT

6. 120 VAC to inducer motor

7. 120 VAC to circulator

8. Sense wire to flame sensor

9. 120 VAC IN

10. Transformer

11. High voltage to spark electrode

12. Thermostat

13. 24 VAC to control circuits

14. Outdoor Sensor (if used)

15. Boiler Supply Temperature Sensor

16. Boiler Supply Temperature Sensor

17. Thermistor Common

18. Thermistor 1

19. Thermistor 2

20. Ground

21. 120 VAC H

22. 120 VAC N

23. 24 VAC

24. Pink or Blue

25. Black

26. Brown or Yellow

27. White

28. Blue to DWV (if used)

29. Red to DWV (if used)

30. Blue to Transformer

31. Black to Transformer

32. Common

33. Green to Ground

34. White

35. Green

36. 120 VAC N

37. 120 VAC H

38. 120 VAC

39. White

40. Green

41. Black

42. Brown

43. Yellow

44. Additional limits, if used

45. Spill Switch
Troubleshooting — control module lights

CHART 1 — Troubleshooting POWER light status

— Usually indicates reversed 120 VAC polarity if POWER light flashes by itself —

WARNING Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

<table>
<thead>
<tr>
<th>Is POWER light off?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is POWER light . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing alone?</td>
</tr>
<tr>
<td>Flashing with another light?</td>
</tr>
<tr>
<td>On steady (NOT flashing)?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSTAT/CIRC light flashing</th>
<th>CHART 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PURGE light flashing</th>
<th>CHART 3</th>
<th>CHART 5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FLAME light flashing</th>
<th>CHART 4</th>
<th>CHART 6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SENSOR GROUND light solid</th>
<th>CHART 7</th>
</tr>
</thead>
</table>

For insufficient heat or no heat problem, go to CHART 8 if POWER light is on steady, with no other light is flashing.

- Usually indicates polarity on incoming 120 VAC power line is wrong or has insufficient earth ground.
- Check grounds to make sure unit has sufficient grounding.
- ▲ TURN OFF POWER ▲ at service switch or breaker, then reverse the HOT and NEUTRAL wires entering the boiler in the J-box.
- Restore POWER at service switch or breaker.

<table>
<thead>
<tr>
<th>Is POWER light flashing now?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- Make sure service switch or circuit breaker is on or fuses are good.
- Remove 120 VAC IN plug (Figure 38, Item 3, page 52) on control module.
- Using voltmeter, check across black and white wire pins of 120 VAC IN plug.

<table>
<thead>
<tr>
<th>Does voltmeter indicate 120 VAC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- Reconnect 120 VAC IN plug.
- Remove transformer plug (Figure 38, Item 2, page 52) on control module.
- Using voltmeter, check across left side top and bottom pins of transformer receptacle.

<table>
<thead>
<tr>
<th>Does voltmeter indicate 120 VAC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- Reinstall 120 VAC transformer plug.
- Remove TSTAT transformer plug (Figure 38, Item 5, page 52) on control module.
- Using voltmeter, check pins of plug.

<table>
<thead>
<tr>
<th>Does voltmeter indicate 24 VAC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

Replace transformer.
Retest and check for back feed of voltage from system wiring.

Boiler should now operate normally.

Have system checked by a licensed electrician.
If problem persists, call your local Weil-McLain sales representative.

Replace control module.
Retest.
11c Troubleshooting — control module lights

(cont.)

CHART 2 — TSTAT CIRC & POWER light flashing

— Usually indicates 48 VAC on thermostat circuit (stray voltage) —

WARNING Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

- Disconnect the two external wires connected to the boiler thermostat leads (two black low voltage leads in J-box).
- Connect a voltmeter across these two incoming wires. Close each thermostat, zone valve and relay in the external circuit one at a time and check the voltmeter reading across the wires.
- There should NEVER be a voltage reading.

Did you find and correct a voltage across the two external thermostat circuit wires?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Leave external boiler thermostat connection wires disconnected from boiler.
- Troubleshoot the external thermostat circuit until you find the source of the stray voltage. (Pay close attention to the wiring connections to 3-wire zone valves.)
- Correct the problem and repeat the voltmeter test above, verifying there is no longer a voltage reading under any condition in the external thermostat circuit.
- An isolating relay may be required.

- If no voltage is found under any condition of the external thermostat circuit, connect the two boiler thermostat connection leads together (or jumper the boiler aquastat T-T terminals).
- Turn off power to the boiler for 1 minute.
- Turn on power and allow boiler to cycle.

Does the TSTAT and POWER lights still flash?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Replace control module. Retest.
- Boiler should now operate per the normal sequence of operation ([Figure 30, page 38]).
- If a voltage does occur under any condition, check and correct the external wiring. (This is a common problem when using 3-wire zone valves.)
- Once the external thermostat circuit wiring is checked and corrected if necessary, reconnect the external thermostat circuit wires to the boiler thermostat wires and allow the boiler to cycle.
Troubleshooting — control module lights (cont.)

CHART 3 — PURGE & POWER light flashing

— Usually indicates pressure switch stuck closed or failed to make within 5 minutes —

WARNING Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

- Reset boiler control by turning off power at service switch or turning down thermostat for at least 45 seconds.
- Thermostat should call for heat and appropriate zone valves open.

<table>
<thead>
<tr>
<th>Does inducer motor operate?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Wait 45 seconds.

<table>
<thead>
<tr>
<th>Does Inducer motor operate?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Remove INDUCER plug (Figure 38, Item 6, page 52) from plug receptacle of control module.
- Place voltmeter leads across the 120 VAC N and 120 VAC H pins of the INDUCER receptacle (middle and bottom pins).

<table>
<thead>
<tr>
<th>Does the voltmeter indicate 120 VAC?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Try reseating plug in module receptacle and restart.
- If inducer still does not work, replace inducer assembly.
- Retest.

- Remove one of the wires connected to the pressure switch.
- Check continuity across the switch terminals.

<table>
<thead>
<tr>
<th>Does the ohmmeter indicate the switch is closed?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Replace control module.
- Retest.

- Check air pressure switch per manual Section 11b.
- Replace if necessary.
- Retest.

- Wait 5 minutes.

<table>
<thead>
<tr>
<th>Is PURGE light flashing?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Boiler should be in normal operating sequence.
- Observe operation until thermostat is satisfied and inducer has completed its post-purge cycle.

- Are vent or combustion air passages blocked?

<table>
<thead>
<tr>
<th>Are vent or combustion air passages blocked?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Clear passages and recycle boiler.
- Recheck boiler operation.
CHART 4 — FLAME & POWER light flashing

— Usually indicates flame sensed when it shouldn't be there —

Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

<table>
<thead>
<tr>
<th>Are manual main shutoff valve and gas valve open?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
| • Leave main manual gas valve closed.
• Turn off power to boiler at service switch or breaker.
• Wait at least 45 seconds.
• Turn on power to boiler.
• Restart boiler, following **Operating instructions** in this manual (Section 9c).

Do FLAME and POWER lights still flash? | |
| **No** | |
| | • Replace control module.
| | • Retest.
| **Yes** | |
| | • Turn off power to the boiler at service switch or breaker.
| | • Wait at least 45 seconds.
| | • Turn on power to boiler.
| | • Restart boiler, following **Operating instructions** in this manual (Section 9c).
| | • Look through the pilot inspection port to see if the pilot is burning during the prepurge period (first 30 seconds of operation).
| | • Replace gas valve.
| | • Retest boiler.

<table>
<thead>
<tr>
<th>Is pilot burning during prepurge period?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
| | • Allow boiler to continue cycling.
| | • Replace control module.
| | • Retest.
| **Yes** | |
| | • Replace control module.
| | • Retest.

Do FLAME and POWER lights still flash?

<table>
<thead>
<tr>
<th>No</th>
<th></th>
</tr>
</thead>
</table>
| | • ▲ TURN OFF POWER ▲ to boiler at service switch or breaker.
| | • Open main manual gas valve.
| | • Turn on power to boiler at service switch or breaker.
| | • Restart boiler per operating instructions.
| | • Perform start-up procedures in boiler manual to verify proper operation.
| | • Replace control module.
| | • Retest.
| **Yes** | |
| | • Boiler should now operate normally.
| | • Original flashing FLAME light caused by gas valve not operating properly.
| | • See normal sequence of operation, **Figure 30**, page 38.
| | • Replace control module.
| | • Retest.
11c Troubleshooting — control module lights (cont.)

CHART 5 — PURGE light flashing and POWER light on steady

— Usually indicates pressure switch opened during run cycle —
— May also be caused by wind gusts in excess of 31 mph for non-direct vent sidewall-vented boilers —

WARNING Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

- Reset boiler control by turning off power at service switch or turning down thermostat for at least 45 seconds.
- Thermostat should call for heat and appropriate zone valves open.

Does inducer motor operate?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remove INDUCER plug (Figure 38, Item 6, page 52) from plug receptacle of control module.</td>
</tr>
<tr>
<td></td>
<td>Place voltmeter leads across the 120 VAC N and 120 VAC H pins of the INDUCER receptacle (middle and bottom pins).</td>
</tr>
<tr>
<td>Does the voltmeter indicate 120 VAC?</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Replace inducer assembly.</td>
</tr>
<tr>
<td></td>
<td>Retest.</td>
</tr>
</tbody>
</table>

- Remove one of the wires connected to the pressure switch.
- Check continuity across the switch terminals.

Does the ohmmeter indicate the switch is closed?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inspect and check wire harness from control module to pressure switch.</td>
</tr>
<tr>
<td></td>
<td>Reset connector in control module receptacle.</td>
</tr>
<tr>
<td></td>
<td>If harness is intact and properly seated, but problem persists, replace control module.</td>
</tr>
<tr>
<td></td>
<td>Retest.</td>
</tr>
</tbody>
</table>

- Check air pressure switch per manual Section 11b.
- Replace if necessary. Retest.

- Wait 5 minutes.

Is PURGE light flashing?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boiler should be in normal operating sequence.</td>
</tr>
<tr>
<td></td>
<td>Observe operation until thermostat is satisfied and inducer has completed its post-purge cycle.</td>
</tr>
</tbody>
</table>

- Clear vent and recycle boiler.
- Recheck boiler operation.

- Replace inducer assembly.
- Retest.

- Check air pressure switch per manual Section 11b.
- Replace if necessary. Retest.
Troubleshooting — control module lights (cont.)

CHART 6 — FLAME light flashing and Power light on steady

Also — Troubleshooting failure to establish main flame.

WARNING

Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

Chart 6

<table>
<thead>
<tr>
<th>Are main manual shutoff valve and gas valve open?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.
- Open main manual shutoff valve and boiler gas valve (per Operating instructions in this manual). Wait at least 45 seconds.
- Turn on power at service switch or breaker. Allow boiler to cycle.

<table>
<thead>
<tr>
<th>Does FLAME light flash now?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.
- Remove burner shield (see Figure 40, item 4, page 64 for location).

<table>
<thead>
<tr>
<th>Verify inlet gas pressure at gas valve:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas — 5.0” w.c. min/14.0” w.c. max</td>
</tr>
<tr>
<td>Propane — 11.0” w.c. min/14.0” w.c. max</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.
- Remove burner shield (see Figure 40, item 4, page 64 for location).

<table>
<thead>
<tr>
<th>Contact gas supplier to correct pressure or gas supply.</th>
</tr>
</thead>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

<table>
<thead>
<tr>
<th>Verify pilot gas line is not kinked, obstructed or damaged and is correctly attached to pilot and gas valve.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify pilot ignition electrode, electrode ceramic and spark lead wire from control are in good condition. Spark gap should be approximately 1/8".</td>
</tr>
<tr>
<td>Correct any above problems, replacing pilot if burner or wiring is damaged.</td>
</tr>
<tr>
<td>Reinstall burner shield to operate boiler for retest after any changes or corrections.</td>
</tr>
<tr>
<td>If none of the above corrects problems, then replace the control module and retest.</td>
</tr>
</tbody>
</table>

| Verify pilot burner is securely attached to pilot bracket, bracket is securely attached to cross tie, and there is no corrosion on the parts which would affect the ground path for flame sense. |
| Verify that pilot flame rod, flame rod ceramic and lead wire from control module to flame rod are in good condition. |
| Correct any above problems, replacing pilot if burner or wiring is damaged. |

<table>
<thead>
<tr>
<th>Verify the voltage across terminals PV and C of the gas valve.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is 24 VAC present there?</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.
- Check the voltage across terminals of MV and C of the gas valve.

<table>
<thead>
<tr>
<th>Verify inlet gas pressure at gas valve:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas — 5.0” w.c. min/14.0” w.c. max</td>
</tr>
<tr>
<td>Propane — 11.0” w.c. min/14.0” w.c. max</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

<table>
<thead>
<tr>
<th>Check flame signal – Detach sense lead from ignition control (Figure 38, Item 8, page 52).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect negative lead of MICROAMMETER to control sense terminal (Figure 38, Item 8, page 52).</td>
</tr>
<tr>
<td>Connect positive lead of MICROAMMETER to sense wire.</td>
</tr>
<tr>
<td>DISCONNECT red wire connected to terminal MV of the gas valve.</td>
</tr>
<tr>
<td>Turn on power to boiler and allow to cycle. As soon as pilot is burning, the MICROAMMETER should read at least 1.0 microamp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is flame signal at least 1.0 microamp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

| If none of the previous steps (including replacing pilot) corrects problem, then replace the control module, reinstall burner shield and retest. |

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

| If the wiring from the control module to gas valve is intact, replace the control module. |
| Retest. |

<table>
<thead>
<tr>
<th>Verify inlet gas pressure at gas valve inlet and within above range?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

<table>
<thead>
<tr>
<th>Check the voltage across terminals of MV and C of the gas valve.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is 24 VAC present there?</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

| Verify pilot burner is securely attached to pilot bracket, bracket is securely attached to cross tie, and there is no corrosion on the parts which would affect the ground path for flame sense. |
| Verify that pilot flame rod, flame rod ceramic and lead wire from control module to flame rod are in good condition. |
| Correct any above problems, replacing pilot if burner or wiring is damaged. |

| If none of the above corrects problems, then replace the control module, reinstall burner shield and retest. |

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.

| If the wiring from the control module to gas valve is intact, replace the control module and retest. |

- **▲ TURN OFF POWER ▲** to boiler at service switch or breaker.
CHART 7 — Troubleshooting Sensor Ground and POWER light Solid and/or “LCO” shown on display

WARNING Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

- **Is harness securely connected to control?**
 - Yes
 - No

 - Secure connector.

 - **Is the Sensor ground light still solid or flashing?**
 - No
 - Yes

 - Control had poor connection, boiler should resume operation.

 - Check ground continuity from Pin 4 of P5 terminal to ground connection.

 - **Is there continuity?**
 - No
 - Yes

 - Secure wire to earth ground.
 - Retest.

 - **Is the Sensor ground light still solid or flashing?**
 - No
 - Yes

 - Ground was improperly connected.
 - Boiler should resume operation.

 - Check for stray voltage on ground and neutral wires.

 - **Yes**
 - **No**

 - Correct incoming power and grounding issues.

 - Replace control.
Chart 8 — Insufficient heat or no heat to system (POWER light on steady)

WARNING Electrical shock hazard — Wherever you see ▲ TURN OFF POWER ▲, follow the instructions. Failure to follow instructions could result in severe personal injury, death or substantial property damage.

- Has it been at least 5 minutes since setting thermostat to call for heat? If not, wait 5 minutes. Is system heating?
- Is thermostat set to call for heat? Remove thermostat wires at boiler and check continuity across the two wires. If circuit isn’t closed, check external thermostat (zone valve, relay, etc.) wiring. Correct problems and retry.
- Reconnect external thermostat wiring at boiler.

Is thermostat circuit closed (continuity across wires)?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Are all red lights off?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Wait 30 seconds.**
- **Are all red lights off?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Replace control module.**
- **Retest.**

- **Is boiler System circulator operating?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Remove CIRCULATOR harness plug from CIRCULATOR plug receptacle (Figure 38, Item 7, page 52). Check with voltmeter across pins of control module receptacle.**
- **Does voltmeter show 120 VAC across pins?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Is FLAME light on?**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Is LIMIT light on?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Check temperature sensor for correct resistance.**
- **Are resistance values correct?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Check rollout switch continuity – Is switch closed?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Replace rollout switch.**

DANGER If rollout thermal fuse element has opened, determine cause and correct condition. Failure to do so will cause severe personal injury, death or substantial property damage.

- **Check any other limit controls wired into the limit circuit. If all are OK, then replace control module.**
- **Retest.**

- **Is all manifold pressure:**
 - 3.50” w.c. on natural gas?
 - 10.0” w.c. on propane?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Replace temperature sensor.**
- **Retest.**

- **Check heat loss calculation versus boiler size.**
- **Clock gas input.**

- **Correct conditions and recheck operation.**
- **See Figure 30, page 38 for normal sequence of operation.**

- **Is vent piping free of blockage?**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Does voltmeter show 120 VAC across pins?**

- **Check any other limit controls wired into the limit circuit. If all are OK, then replace control module.**
- **Retest.**

- **Verify Sequence of operation, Figure 30, page 38.**

- **Boiler is in standby.**
- **Set thermostat to call for heat and recheck operation.**

- **Replace control module.**
- **Retest.**

- **Repair/replace circulator. Retest.**
- **Repair/replace wiring. Retest.**

- **Verify Sequence of operation, Figure 30, page 38.**

- **Boiler is in standby.**

- **Set thermostat to call for heat and recheck operation.**

- **Repair/replace circulator. Retest.**
- **Repair/replace wiring. Retest.**

- **Replace temperature sensor.**
- **Retest.**

- **Correct conditions and recheck operation.**
- **See Figure 30, page 38 for normal sequence of operation.**

- **Check heat loss calculation versus boiler size.**
- **Clock gas input.**
Replacement parts must be purchased through a local Weil-McLain distributor. When ordering, specify boiler model and size and include description and part number of replacement part. Results from using modified or other manufactured parts will not be covered by warranty and may damage boiler or impair operation.

Weil-McLain part numbers are found in Weil-McLain Boilers and Controls Repair Parts Lists.

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 71 of this manual. Failure to comply could result in severe personal injury.
Replacement parts — section assembly

Figure 39 Section assembly

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Weil-McLain part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>End section, left hand, 51124</td>
<td>311-103-851</td>
</tr>
<tr>
<td>2</td>
<td>End section, right hand 51128</td>
<td>311-103-821</td>
</tr>
<tr>
<td>3</td>
<td>Intermediate section, 51125</td>
<td>311-103-818</td>
</tr>
<tr>
<td>not shown</td>
<td>Replacement section assembly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGi-25 and CGi-3</td>
<td>321-114-330</td>
</tr>
<tr>
<td></td>
<td>CGi-4</td>
<td>321-114-331</td>
</tr>
<tr>
<td></td>
<td>CGi-5</td>
<td>321-114-332</td>
</tr>
<tr>
<td></td>
<td>CGi-6</td>
<td>321-114-333</td>
</tr>
<tr>
<td></td>
<td>CGi-7</td>
<td>321-114-334</td>
</tr>
<tr>
<td></td>
<td>CGi-8</td>
<td>321-114-335</td>
</tr>
<tr>
<td>not shown</td>
<td>Section replacement kit, includes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seals and sealant for 1 joint</td>
<td>381-354-527</td>
</tr>
<tr>
<td>4</td>
<td>Tie rod, 7/16” without nut (3 per boiler):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGi-25 and CGi-3</td>
<td>560-234-500</td>
</tr>
<tr>
<td></td>
<td>CGi-4</td>
<td>560-234-501</td>
</tr>
<tr>
<td></td>
<td>CGi-5</td>
<td>560-234-502</td>
</tr>
<tr>
<td></td>
<td>CGi-6</td>
<td>560-234-503</td>
</tr>
<tr>
<td></td>
<td>CGi-7</td>
<td>560-234-504</td>
</tr>
<tr>
<td></td>
<td>CGi-8</td>
<td>560-234-505</td>
</tr>
<tr>
<td>5</td>
<td>Nut, 7/16” (2 per tie rod)</td>
<td>561-928-235</td>
</tr>
<tr>
<td>6</td>
<td>Washer, 7/16” (1 per tie rod)</td>
<td>562-248-684</td>
</tr>
<tr>
<td>7</td>
<td>Radiation plate (1 per joint)</td>
<td>460-003-700</td>
</tr>
<tr>
<td>8</td>
<td>Collector hood and transition assembly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGi-25</td>
<td>381-354-594</td>
</tr>
<tr>
<td></td>
<td>CGi-3</td>
<td>381-354-595</td>
</tr>
<tr>
<td></td>
<td>CGi-4</td>
<td>381-354-596</td>
</tr>
<tr>
<td></td>
<td>CGi-5</td>
<td>381-354-597</td>
</tr>
<tr>
<td></td>
<td>CGi-6</td>
<td>381-354-598</td>
</tr>
<tr>
<td></td>
<td>CGi-7</td>
<td>381-354-599</td>
</tr>
<tr>
<td></td>
<td>CGi-8</td>
<td>381-354-600</td>
</tr>
<tr>
<td>9</td>
<td>Boiler Temperature Sensor</td>
<td>Weil-McLain</td>
</tr>
<tr>
<td>10</td>
<td>Inducer fan assembly kit, includes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inducer fan assembly, gasket and nuts</td>
<td>381-356-499</td>
</tr>
<tr>
<td>11</td>
<td>Gasket, inducer</td>
<td>590-317-627</td>
</tr>
</tbody>
</table>
Replacement parts — base

Figure 40 Base assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base assembly kit (includes base panels items 1, 2, 3, 4, 5, 6 and 7)</td>
<td>CGI-25 & CGI-3, CGI-4, CGI-5, CGI-6, CGI-7, CGI-8</td>
</tr>
<tr>
<td>2</td>
<td>Base front cross-tie assembly (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Base back cross-tie assembly (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Burner shield (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Base pan angle, left side (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Base pan angle, right side (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Base pan (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>Base pan air baffle (in Base assembly)</td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>Burner mounting plate</td>
<td>CGI-25 & CGI-3, CGI-4, CGI-5, CGI-6, CGI-7, CGI-8</td>
</tr>
<tr>
<td>8b</td>
<td>Rear spacing strip</td>
<td>CGI-25 & CGI-3, CGI-4, CGI-5, CGI-6, CGI-7, CGI-8</td>
</tr>
<tr>
<td>9</td>
<td>Base insulation kit</td>
<td>CGI-25 & CGI-3, CGI-4, CGI-5, CGI-6, CGI-7, CGI-8</td>
</tr>
<tr>
<td>10</td>
<td>Boiler leg kit</td>
<td>550-320-219</td>
</tr>
<tr>
<td>11</td>
<td>Manifold</td>
<td>CGI-25 & CGI-3, CGI-4, CGI-5, CGI-6, CGI-7, CGI-8</td>
</tr>
<tr>
<td>12</td>
<td>Main burner orifice — Natural gas, sea level (see Table 2, page 12 for orifice size) CGI-25, CGI-3 - CGI-5, CGI-6 - CGI-8</td>
<td>560-529-090, 560-529-126, 560-529-077</td>
</tr>
<tr>
<td></td>
<td>Main burner orifice — Liquefied Petroleum (Propane) gas, sea level (see Table 2, page 12 for orifice size) CGI-25, CGI-3 - CGI-5, CGI-6 - CGI-8</td>
<td>560-529-084, 560-529-111, 560-529-078</td>
</tr>
<tr>
<td>13</td>
<td>Burner</td>
<td>512-200-076</td>
</tr>
<tr>
<td>14</td>
<td>Screw, 10-32 x 0.38 STP type 23 hex, washer head slot</td>
<td>562-135-710</td>
</tr>
<tr>
<td>15</td>
<td>Rollout thermal fuse element</td>
<td>512-050-230</td>
</tr>
</tbody>
</table>
Replacement parts — base (continued)
Replacement parts — jacket

Figure 41 Jacket assembly

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction box, 2 x 4</td>
<td>Panel, left side, with insulation</td>
<td>Panel, right side, with insulation</td>
<td>Panel, top front, with insulation</td>
<td>Panel, top rear, with insulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boiler Model</th>
<th>Natural Gas</th>
<th>Propane Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGI-25</td>
<td>381-355-851</td>
<td>381-355-895</td>
</tr>
<tr>
<td>CGI-3</td>
<td>381-355-858</td>
<td>381-355-898</td>
</tr>
<tr>
<td>CGI-4</td>
<td>381-355-864</td>
<td>381-355-901</td>
</tr>
<tr>
<td>CGI-5</td>
<td>381-355-871</td>
<td>381-355-904</td>
</tr>
<tr>
<td>CGI-6</td>
<td>381-355-877</td>
<td>381-355-907</td>
</tr>
<tr>
<td>CGI-7</td>
<td>381-355-883</td>
<td>381-355-910</td>
</tr>
<tr>
<td>CGI-8</td>
<td>381-355-889</td>
<td>381-355-913</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel, door</td>
<td>Cross tie, bottom front</td>
<td>Panel, interior, with insulation</td>
<td>Panel, rear, with insulation</td>
<td>Not shown — gold touch-up paint</td>
<td>Blower cover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boiler Model</th>
<th>Weil-McLain part number</th>
<th>Boiler Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGI-25/3</td>
<td>381-355-540, 431-223-325</td>
<td>CGI-25/3</td>
</tr>
<tr>
<td>CGI-4</td>
<td>381-355-552, 431-223-326</td>
<td>CGI-4</td>
</tr>
<tr>
<td>CGI-5</td>
<td>381-355-559, 431-223-327</td>
<td>CGI-5</td>
</tr>
<tr>
<td>CGI-6</td>
<td>381-355-566, 431-223-328</td>
<td>CGI-6</td>
</tr>
<tr>
<td>CGI-7</td>
<td>381-355-573, 431-223-329</td>
<td>CGI-7</td>
</tr>
<tr>
<td>CGI-8</td>
<td>381-355-580, 431-223-330</td>
<td>CGI-8</td>
</tr>
</tbody>
</table>
Replacement parts — trim

Figure 42 Trim assembly

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer’s part number</th>
<th>Weil-McLain part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure relief valve, ASME, 30 PSIG, ¾” male inlet</td>
<td>Conbraco Watts</td>
<td>10-407-05 M330</td>
<td>511-546-920 511-546-924</td>
</tr>
<tr>
<td></td>
<td>Pressure relief valve, ASME, 30 PSIG, ¾” female inlet</td>
<td>Conbraco Watts</td>
<td>10-408-05 335</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Combination pressure-temperature gauge, 3/4” diameter, short shank</td>
<td>Weil-McLain</td>
<td></td>
<td>380-000-000</td>
</tr>
<tr>
<td>3</td>
<td>Drain valve, ¾”</td>
<td>Conbraco</td>
<td>31-606-01 710</td>
<td>511-210-423 511-246-392</td>
</tr>
<tr>
<td></td>
<td>(Fittings shown are included with boiler.)</td>
<td>Hammond Valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matco-Norca Watts</td>
<td>205F04 BD-2C</td>
<td>511-246-392 511-246-392</td>
</tr>
<tr>
<td>4</td>
<td>Circulator</td>
<td>Taco</td>
<td>007</td>
<td>511-405-113</td>
</tr>
<tr>
<td></td>
<td>(Fittings shown are shipped loose with boiler.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Circulator gasket, universal (2 per boiler)</td>
<td>Weil-McLain</td>
<td></td>
<td>590-317-535</td>
</tr>
<tr>
<td>not shown</td>
<td>Circulator hardware kit, includes: 1 flange, 2 nuts, 2 screws, 1 gasket — ¾” NPT — CGI-25</td>
<td>Weil-McLain</td>
<td></td>
<td>381-354-530 381-354-525 381-354-526 381-354-531</td>
</tr>
<tr>
<td></td>
<td>1” NPT — CGI-3 through CGI-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1¼” NPT — CGI-6 and CGI-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1½” NPT — CGI-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Circulator wiring harness kit, with Molex (loose)</td>
<td></td>
<td></td>
<td>591-391-976</td>
</tr>
</tbody>
</table>
Replacement parts — controls

Natural gas components

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Boiler model</th>
<th>Manufacturer</th>
<th>Manufacturer's part number</th>
<th>Weil-McLain part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas valve, ½” x ½”</td>
<td>CGi-25 thru -6</td>
<td>Honeywell</td>
<td>VR8204A2001</td>
<td>511-044-381</td>
</tr>
<tr>
<td>2</td>
<td>Gas valve, ¾” x ¾”</td>
<td>CGi-7 & CGi-8</td>
<td>Honeywell</td>
<td>VR8304M002</td>
<td>511-044-353</td>
</tr>
<tr>
<td>2</td>
<td>Pilot kit w/orifice & aluminum pilot gas tubing</td>
<td></td>
<td>Honeywell</td>
<td>VR8204M2701</td>
<td>511-044-354</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Honeywell</td>
<td>VR8304M4010</td>
<td>511-044-355</td>
</tr>
</tbody>
</table>

Propane gas components

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Boiler model</th>
<th>Manufacturer</th>
<th>Manufacturer's part number</th>
<th>Weil-McLain part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas valve, ½” x ½”</td>
<td>CGi-25 thru -6</td>
<td>Honeywell</td>
<td>VR8204M2701</td>
<td>511-044-354</td>
</tr>
<tr>
<td>2</td>
<td>Gas valve, ¾” x ¾”</td>
<td>CGi-7 & CGi-8</td>
<td>Honeywell</td>
<td>VR8304M4010</td>
<td>511-044-355</td>
</tr>
<tr>
<td>2</td>
<td>Pilot kit w/orifice & aluminum pilot gas tubing</td>
<td></td>
<td>Honeywell</td>
<td>VR8204M2701</td>
<td>511-044-354</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Honeywell</td>
<td>VR8304M4010</td>
<td>511-044-355</td>
</tr>
</tbody>
</table>

Natural gas and propane gas components

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Boiler model</th>
<th>Manufacturer</th>
<th>Manufacturer's part number</th>
<th>Weil-McLain part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Control module</td>
<td>Weil-McLain</td>
<td></td>
<td></td>
<td>381-330-022</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Air pressure switch</td>
<td>CGi-25 & CGi-3</td>
<td>Tri-Delta</td>
<td>PPS10171-3013</td>
<td>511-624-401</td>
</tr>
<tr>
<td></td>
<td>1.79” w.c.</td>
<td>CGi-4</td>
<td>Cleveland</td>
<td>NS2-1047-09</td>
<td>511-624-654</td>
</tr>
<tr>
<td></td>
<td>1.36” w.c.</td>
<td>CGi-5</td>
<td>Tri-Delta</td>
<td>PPS10171-3095</td>
<td>511-624-303</td>
</tr>
<tr>
<td></td>
<td>1.12” w.c.</td>
<td>CGi-6 & CGi-8</td>
<td>Tri-Delta</td>
<td>PPS10171-3096</td>
<td>511-624-304</td>
</tr>
<tr>
<td></td>
<td>0.80” w.c.</td>
<td>CGI-7</td>
<td>Tri-Delta</td>
<td>PPS10171-3031</td>
<td>511-624-405</td>
</tr>
<tr>
<td></td>
<td>0.75” w.c.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Control transformer</td>
<td></td>
<td></td>
<td></td>
<td>381-356-678</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td>Tubing, air pressure switch, 0.12 l.d. silicone red, to collector hood white, to transition</td>
<td>Lydall</td>
<td></td>
<td>590-317-650</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td></td>
<td></td>
<td></td>
<td>590-317-651</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td>Wiring harness - J-box to control module</td>
<td>Weil-McLain</td>
<td></td>
<td>591-391-975</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td>Wiring harness - Thermostat</td>
<td>Weil-McLain</td>
<td></td>
<td>591-392-006</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td>Wiring harness - Water Temperature Sensor</td>
<td>Weil-McLain</td>
<td></td>
<td>591-392-035</td>
</tr>
<tr>
<td></td>
<td>not shown</td>
<td>Wiring harness - Inducer motor to control module</td>
<td>Weil-McLain</td>
<td></td>
<td>591-391-980</td>
</tr>
</tbody>
</table>
Dimensions

Figure 44 Dimensional drawing

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>Supply tapping (inches NPT)</th>
<th>Return tapping (inches NPT)</th>
<th>Gas connection size Note 3 (inches NPT)</th>
<th>Gas manifold size Note 3 (inches NPT)</th>
<th>“W” Jacket width (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGI-25</td>
<td>1 ⅛</td>
<td>1 ¼</td>
<td>½</td>
<td>½</td>
<td>10</td>
</tr>
<tr>
<td>CGI-3</td>
<td>1 ¼</td>
<td>1 ¼</td>
<td>½</td>
<td>½</td>
<td>10</td>
</tr>
<tr>
<td>CGI-4</td>
<td>1 ¼</td>
<td>1 ¼</td>
<td>½</td>
<td>½</td>
<td>13</td>
</tr>
<tr>
<td>CGI-5</td>
<td>1 ¼</td>
<td>1 ¼</td>
<td>½</td>
<td>½</td>
<td>16</td>
</tr>
<tr>
<td>CGI-6</td>
<td>1 ¼</td>
<td>1 ¼</td>
<td>½</td>
<td>½</td>
<td>19</td>
</tr>
<tr>
<td>CGI-7</td>
<td>1 ¼</td>
<td>1 ¼</td>
<td>¾</td>
<td>¾</td>
<td>22</td>
</tr>
<tr>
<td>CGI-8</td>
<td>1 ¼</td>
<td>1 ¼</td>
<td>¾</td>
<td>¾</td>
<td>25</td>
</tr>
</tbody>
</table>

Note 3: Gas piping from meter to boiler to be sized per local utility requirements.
Ratings

Table 11 Boiler ratings

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>0 - 2,000 feet Altitude</th>
<th>2,000 - 4,500 feet Altitude</th>
<th>Heating Capacity</th>
<th>Seasonal Efficiency</th>
<th>Net Ratings (water)</th>
<th>Boiler water content</th>
<th>Vent size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGI-25</td>
<td>50,000</td>
<td>45,000</td>
<td>42,000</td>
<td>84.0</td>
<td>37,000</td>
<td>1.5</td>
<td>3"</td>
</tr>
<tr>
<td>CGI-3</td>
<td>60,000</td>
<td>60,000</td>
<td>51,000</td>
<td>85.1</td>
<td>45,000</td>
<td>1.5</td>
<td>3"</td>
</tr>
<tr>
<td>CGI-4</td>
<td>90,000</td>
<td>81,000</td>
<td>76,000</td>
<td>85.0</td>
<td>66,000</td>
<td>2.1</td>
<td>3"</td>
</tr>
<tr>
<td>CGI-5</td>
<td>119,000</td>
<td>120,000</td>
<td>100,000</td>
<td>83.3</td>
<td>87,000</td>
<td>2.7</td>
<td>3"</td>
</tr>
<tr>
<td>CGI-6</td>
<td>167,000</td>
<td>150,000</td>
<td>140,000</td>
<td>83.3</td>
<td>122,000</td>
<td>3.3</td>
<td>3"</td>
</tr>
<tr>
<td>CGI-7</td>
<td>200,000</td>
<td>180,000</td>
<td>167,000</td>
<td>83.0</td>
<td>145,000</td>
<td>3.8</td>
<td>3"</td>
</tr>
<tr>
<td>CGI-8</td>
<td>233,000</td>
<td>210,000</td>
<td>194,000</td>
<td>82.7</td>
<td>169,000</td>
<td>4.4</td>
<td>3"</td>
</tr>
</tbody>
</table>

Notes

1. Add “PIN” for Natural gas boiler - “PIL” for Liquefied Petroleum (propane) gas boiler.
2. Based on standard test procedures prescribed by the United States Department of Energy.
3. Net AHRI ratings are based on net installed radiation of sufficient quantity for the requirements of the building and nothing need be added for normal piping and pickup. Ratings are based on a piping and pickup allowance of 1.15. An additional allowance should be made for unusual piping and pickup loads.
4. CGI boilers require special venting, consistent with Category I or III boiler. Use only the vent materials and methods specified in this manual. Vent diameter shown above is for direct exhaust venting. See Table 3, page 14, for vent diameter when chimney draft venting.

NOTICE

CGI boilers for residential radiant panel systems, converted gravity heating systems or other low water temperature applications should be installed with balancing valves and bypass piping equal to the supply and return size to avoid excessive flue gas condensation due to lower operating water temperatures. CSA design certified for installation on combustible flooring. Tested for 50 psi working pressure.
Handling ceramic fiber and fiberglass materials

REMOVAL OF COMBUSTION CHAMBER LINING OR BASE PANELS

⚠️ WARNING

The combustion chamber lining or base insulation panels in this product contain ceramic fiber materials that have been identified as carcinogenic, or possibly carcinogenic, to humans. Ceramic fibers can be converted to cristobalite in very high temperature applications. The International Agency for Research on Cancer (IARC) has concluded, “Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1).”

Precautionary measures

- Avoid breathing fiberglass dust and contact with skin or eyes.
 - Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for fiberglass wool at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.
 - Wear long-sleeved, loose fitting clothing, gloves, and eye protection.
- Apply enough water to the combustion chamber lining or base insulation to prevent airborne dust.
- Remove combustion chamber lining or base insulation from the boiler and place it in a plastic bag for disposal.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washer thoroughly.

NIOSH stated First Aid.

- Eye: Irrigate immediately.
- Breathing: Fresh air.

REMOVAL OF FIBERGLASS WOOL or INSTALLATION OF FIBERGLASS WOOL, COMBUSTION CHAMBER LINING OR BASE PANELS:

⚠️ WARNING

This product contains fiberglass jacket insulation and ceramic fiber materials in combustion chamber lining or base panels in gas fired products. Airborne fibers from these materials have been listed by the State of California as a possible cause of cancer through inhalation.

Precautionary measures

- Avoid breathing fiberglass dust and contact with skin or eyes.
 - Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for fiberglass wool at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.
 - Wear long-sleeved, loose fitting clothing, gloves, and eye protection.
- Operations such as sawing, blowing, tear out, and spraying may generate airborne fiber concentration requiring additional protection.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washer thoroughly.

NIOSH stated First Aid.

- Eye: Irrigate immediately.
- Breathing: Fresh air.